scholarly journals Network of “drug-target-SARS-CoV-2 Related Genes” Through Integrated Analysis of Pharmacology and Geo Database

Author(s):  
Jin ping Hou ◽  
Yong heng Wang ◽  
Yu meng Chen ◽  
Yi hao Chen ◽  
Xiao Zhu ◽  
...  

Abstract BackgroundCoronavirus Disease 2019 (COVID-19) respiratory disease rapidly caused a global pandemic and social and economic disruption. The combination of Traditional Chinese medicine (TCM) and Conventional Western medicine (CWM) is more effective for COVID-19 treatment. Moreover, TCM and CWM are important data source for developing new drug targets and promote strategies treat SARS-CoV-2 infections. However, many studies have analyzed the therapeutic mechanism of CWM or TCM alone for COVID-19, it is still unclear the interaction mechanism between TCM and CWM on COVID-19.MethodsThis paper integrates network pharmacology and GEO database to mine and identify COVID-19 molecular therapeutic targets, providing potential targets and new ideas for COVID-19 gene therapy and new drug development. It includes: 1) using TCMSP, TTD, PubChem and CTD databases to analyze drug interactions and associated phenotypes for SARS-CoV-2, to correlate drug and disease interaction mechanisms to screen key drug targets; 2) using GEO database to correlate differential genes and drug targets to screen potential antiviral gene therapy targets, to construct regulatory network and key points of SARS-CoV-2 therapeutic drugs; 3) using computer simulation of molecular docking to screen virus-related proteins for new drugs. ResultsIntegrated analysis of network pharmacology discovered that baicalein, estrone and quercetin are the pivotal active ingredients in TCM and CWM. Combining drug target genes in pharmacology database and virus induced genes in GEO database, the result showed the core hub genes related to COVID-19: STAT1, IL1B, IL6, IL8, PTGS2 and NFKBIA, and these genes were significantly downregulated in A549 and NHBE cells by SARS-CoV-2 infection. Moreover, chemical interaction and molecular docking analysis of hub genes showed that folic acid might as be potential therapeutic drug for COVID-19 treatment, and SARS-CoV-2 nucleocapsid phosphoprotein was a potential drug target. The network of “drug-target-SARS-CoV-2 related genes” provide noval potential compounds and targets for further studies of SARS-CoV-2.ConclusionsIntegrated analysis of network pharmacology and big data mining provided noval potential compounds and targets for further studies of SARS-CoV-2. Our research implied folic acid and SARS-CoV-2 N as therapeutic target in TCM and CWM. Our research also suggests that targeting SARS-CoV-2 N protein is likely to be a common mechanism of TCM and CWM. On the one hand, the identification of pivotal genes provides a target for COVID-19 molecular therapy, on the other hand, it provides ideas for the analysis of interaction mechanism between virus and host.

2021 ◽  
Vol 16 (1) ◽  
pp. 1934578X2098213
Author(s):  
Xiaodong Deng ◽  
Yuhua Liang ◽  
Jianmei Hu ◽  
Yuhui Yang

Diabetes mellitus (DM) is a chronic disease that is very common and seriously threatens patient health. Gegen Qinlian decoction (GQD) has long been applied clinically, but its mechanism in pharmacology has not been extensively and systematically studied. A GQD protein interaction network and diabetes protein interaction network were constructed based on the methods of system biology. Functional module analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and Gene Ontology (GO) enrichment analysis were carried out on the 2 networks. The hub nodes were filtered by comparative analysis. The topological parameters, interactions, and biological functions of the 2 networks were analyzed in multiple ways. By applying GEO-based external datasets to verify the results of our analysis that the Gene Set Enrichment Analysis (GSEA) displayed metabolic pathways in which hub genes played roles in regulating different expression states. Molecular docking is used to verify the effective components that can be combined with hub nodes. By comparing the 2 networks, 24 hub targets were filtered. There were 7 complex relationships between the networks. The results showed 4 topological parameters of the 24 selected hub targets that were much higher than the median values, suggesting that these hub targets show specific involvement in the network. The hub genes were verified in the GEO database, and these genes were closely related to the biological processes involved in glucose metabolism. Molecular docking results showed that 5,7,2', 6'-tetrahydroxyflavone, magnograndiolide, gancaonin I, isoglycyrol, gancaonin A, worenine, and glyzaglabrin produced the strongest binding effect with 10 hub nodes. This compound–target mode of interaction may be the main mechanism of action of GQD. This study reflected the synergistic characteristics of multiple targets and multiple pathways of traditional Chinese medicine and discussed the mechanism of GQD in the treatment of DM at the molecular pharmacological level.


2021 ◽  
Author(s):  
Dianna Liu ◽  
Shicheng Lin ◽  
Yuan Li ◽  
Tian Zhou ◽  
Kaiwen Hu ◽  
...  

Abstract BackgroundLung adenocarcinoma (LUAD) is one of the most common malignancies with a rise in new cases worldwide each year. Recurrence significantly influences the survival in patients with LUAD. Yin-Huo-Tang (YHT) is a classic traditional Chinese prescription, used to prevent lung cancer relapse by “nourishing yin and clearing heat”. MethodsIn this study, the mechanism of YHT in LUAD recurrence was investigated. Firstly, the bioactive compounds-targets network and the protein–protein interaction network were constructed, and functional annotation and pathway enrichment analyses were performed. Pivotal compounds and hub genes were selected from the networks. Subsequently, the effectiveness of YHT was confirmed in lewis lung carcinoma mice. RNA sequencing was used to explore the mRNA expression differences between tumor tissues in the model mouses and YHT-treated mouses. The pathways screened by network pharmacology and RNA sequencing analysis at the same time were considered the most important pathways. At last, qualitative phytochemical analysis, molecular docking technology, PCR and WB analysis were used to validate the pivotal active ingredients, hub genes and main pathways.ResultsThere were 128 active compounds, 419 targets interacting with LUAD recurrence. Network analysis identified 4 pivotal compounds, 28 hub genes and 30 main pathways. Target genes mainly focused on inflammation, metabolism, immune responses and apoptosis. We confirmed that YHT could inhibit the recurrence of lung adenocarcinoma through animal experimental study. Sphingolipid signaling pathway was the common main pathway in network pharmacology and RNA sequencing results. The hub genes related with the sphingolipid signaling pathway was S1PR5. Qualitative phytochemical analysis of the water extract of YHT confirmed the presence of 3 pivotal compounds, namely stigmasterol, nootkatone and ergotamine. The results of molecular docking verified the pivotal compounds of YHT could good affinity with the S1PR5. The PCR and WB analysis verified YHT suppressed lewis lung cancer cells proliferation by inhibiting S1P/S1PR5/Gi/Ras/Raf/MEK/ERK pathway, and inhibited migration through S1P/S1PR5/Gi/PI3K/RAC pathway.ConclusionThe results confirmed the therapeutic effect of YHT on the recurrence of LUAD by multi-component-multi-target mode, the sphingolipid signaling pathway was one of the most relevant potential signaling pathways.


2020 ◽  
Author(s):  
Ben Geoffrey A S ◽  
Pavan Preetham Valluri ◽  
Akhil Sanker ◽  
Rafal Madaj ◽  
Host Antony Davidd ◽  
...  

<p>Network data is composed of nodes and edges. Successful application of machine learning/deep learning algorithms on network data to make node classification and link prediction has been shown in the area of social networks through which highly customized suggestions are offered to social network users. Similarly one can attempt the use of machine learning/deep learning algorithms on biological network data to generate predictions of scientific usefulness. In the present work, compound-drug target interaction data set from bindingDB has been used to train machine learning/deep learning algorithms which are used to predict the drug targets for any PubChem compound queried by the user. The user is required to input the PubChem Compound ID (CID) of the compound the user wishes to gain information about its predicted biological activity and the tool outputs the RCSB PDB IDs of the predicted drug target. The tool also incorporates a feature to perform automated <i>In Silico</i> modelling for the compounds and the predicted drug targets to uncover their protein-ligand interaction profiles. The programs fetches the structures of the compound and the predicted drug targets, prepares them for molecular docking using standard AutoDock Scripts that are part of MGLtools and performs molecular docking, protein-ligand interaction profiling of the targets and the compound and stores the visualized results in the working folder of the user. The program is hosted, supported and maintained at the following GitHub repository </p> <p><a href="https://github.com/bengeof/Compound2Drug">https://github.com/bengeof/Compound2Drug</a></p>


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jing Xie ◽  
Jun Wu ◽  
Sihui Yang ◽  
Huaijun Zhou

Background. Aloe vera has long been considered an anticancer herb in different parts of the world. Objective. To explore the potential mechanism of aloe vera in the treatment of cancer using network pharmacology and molecule docking approaches. Methods. The active ingredients and corresponding protein targets of aloe vera were identified from the TCMSP database. Targets related to cancer were obtained from GeneCards and OMIM databases. The anticancer targets of aloe vera were obtained by intersecting the drug targets with the disease targets, and the process was presented in the form of a Venn plot. These targets were uploaded to the String database for protein-protein interaction (PPI) analysis, and the result was visualized by Cytoscape software. Go and KEGG enrichment were used to analyze the biological process of the target proteins. Molecular docking was used to verify the relationship between the active ingredients of aloe vera and predicted targets. Results. By screening and analyzing, 8 active ingredients and 174 anticancer targets of aloe vera were obtained. The active ingredient-anticancer target network constructed by Cytoscape software indicated that quercetin, arachidonic acid, aloe-emodin, and beta-carotene, which have more than 4 gene targets, may play crucial roles. In the PPI network, AKT1, TP53, and VEGFA have the top 3 highest values. The anticancer targets of aloe vera were mainly involved in pathways in cancer, prostate cancer, bladder cancer, pancreatic cancer, and non-small-cell lung cancer and the TNF signaling pathway. The results of molecular docking suggested that the binding ability between TP53 and quercetin was the strongest. Conclusion. This study revealed the active ingredients of aloe vera and the potential mechanism underlying its anticancer effect based on network pharmacology and provided ideas for further research.


2020 ◽  
Author(s):  
Ma Donglai ◽  
Yuxin Jia ◽  
Mingdong Si ◽  
Huigai Sun ◽  
Huiru Du ◽  
...  

Abstract Background: Retrieve Curative effect of Six Gentlemen Modified Decoction (SGMD) in treating with coronavirus disease ( COVID-19 ) by network pharmacology and verify its authenticity by molecular docking. Methods: The chemical constituents, effective components, and action targets were screened using TCMSP. COVID-19 related targets were retrieved by the GeneCards and NCBI databases, and drug targets and disease targets were mapped by Venny to obtain potential targets for treatment. The regulatory network of traditional Chinese medicine (TCM) compounds was established with Cytoscape to obtain the key components, and the PPI network and its network topology were established with the Bisogenet and CytoNCA plug-ins to obtain the core targets. Bioconductor was used for GO function analysis and KEGG pathway analysis to obtain the relevant functions and pathways. Results: 173 effective components, 253 targets, and 348 targets related to COVID-19 were obtained after screening, 50 cross targets were shown, and the key components of the top 15 are flavonoids such as quercetin, luteolin, kaempferol, naringenin, licochalcone A, etc. The top 28 core targets include TP53, EGFR, SRC, AR, ABL1, and others. Biological processes such as the responses to metal ions, molecules of bacterial origin, lipopolysaccharide, toxic substances, and oxidative stress were involved. The main pathway involved the AGE−RAGE signaling pathway in diabetic complications as well as the TNF and IL-17 signaling pathways. The average binding energies of the first three core components connected with 6LU7 and 1R42 were -4.16 kJ/mol and -4.12 kJ/mol, respectively.Conclusion: The core compounds of SGMD can spontaneously combine with SARS-CoV-2 3CL hydrolase and ACE2 to treat COVID-19.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Huang ◽  
Jinkun Lin ◽  
Surong Huang ◽  
Jianzhen Shen

Background: It has been verified that deficiency of Qi, a fundamental substance supporting daily activities according to the Traditional Chinese Medicine theory, is an important symptom of cancer. Qi-invigorating herbs can inhibit cancer development through promoting apoptosis and improving cancer microenvironment. In this study, we explored the potential mechanisms of Qi-invigorating herbs in diffuse large B cell lymphoma (DLBCL) through network pharmacology and in vitro experiment.Methods: Active ingredients of Qi-invigorating herbs were predicted from the Traditional Chinese Medicine Systems Pharmacology Database. Potential targets were obtained via the SwissTargetPrediction and STITCH databases. Target genes of DLBCL were obtained through the PubMed, the gene-disease associations and the Malacards databases. Overlapping genes between DLBCL and each Qi-invigorating herb were collected. Hub genes were subsequently screened via Cytoscape. The Gene Ontology and pathway enrichment analyses were performed using the DAVID database. Molecular docking was performed among active ingredients and hub genes. Hub genes linked with survival and tumor microenvironment were analyzed through the GEPIA 2.0 and TIMER 2.0 databases, respectively. Additionally, in vitro experiment was performed to verify the roles of common hub genes.Results: Through data mining, 14, 4, 22, 22, 35, 2, 36 genes were filtered as targets of Ginseng Radix et Rhizoma, Panacis Quinquefolii Radix, Codonopsis Radix, Pseudostellariae Radix, Astragali Radix, Dioscoreae Rhizoma, Glycyrrhizae Radix et Rhizoma for DLBCL treatment, respectively. Then besides Panacis Quinquefolii Radix and Dioscoreae Rhizoma, 1,14, 10, 14,13 hub genes were selected, respectively. Molecular docking studies indicated that active ingredients could stably bind to the pockets of hub proteins. CASP3, CDK1, AKT1 and MAPK3 were predicted as common hub genes. However, through experimental verification, only CASP3 was considered as the common target of Qi-invigorating herbs on DLBCL apoptosis. Furthermore, the TIMER2.0 database showed that Qi-invigorating herbs might act on DLBCL microenvironment through their target genes. Tumor-associated neutrophils may be main target cells of DLBCL treated by Qi-invigorating herbs.Conclusion: Our results support the effects of Qi-invigorating herbs on DLBCL. Hub genes and immune infiltrating cells provided the molecular basis for each Qi-invigorating herb acting on DLBCL.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhao Yang ◽  
Zhen-Zhen Yuan ◽  
Xin-Long Ma

Background. With the advent of ageing population, osteoporosis (OP) has already become a global challenge. Jintiange capsule is extensively applied to treat OP in China. Although recent studies demonstrate that it generates significant effects on strengthening bone, the exact mechanism of the jintiange capsule for treating OP remains unknown. Purpose. To understand the main ingredients of the jintiange capsule, predict the possible targets and the relevant signal transduction pathways, and explore the mechanism of the jintiange capsule for the treatment of OP. Methods. Main ingredients of the jintiange capsule, drug targets, and potential disease targets for OP were obtained from public databases. Molecular biological processes and signaling pathways were determined via bioinformatic analysis, containing protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the disease-drug-ingredient-targets-pathways networks were constructed using Cytoscape. According to CytoNCA, core targets were acquired. Finally, the present study conducted molecular docking for better testing the abovementioned results. Results. In the current work, we found that 4 main ingredients of the jintiange capsule, 33 drug targets, 4745 potential disease targets for OP, and 12 overlapping targets were identified. PPI network containing 12 nodes and 25 edges proved that there existed a complex relationship. As revealed by GO functional annotation, the intersected targets were mostly associated with BP, CC, and MF. The targets were enriched to 368 items in BP, 27 items in CC, and 42 items in MF. They mainly included calcium ion homeostasis, calcium channel complex, and calcium channel regulator activity. According to KEGG pathway analysis, the intersected targets were mostly associated with Rap 1, cGMP-PKG, Ras, cAMP, calcium pathways, and so on. Based on the analysis with CytoNCA, we acquired 4 core targets, respectively—CALR, SPARC, CALM1, and CALM2. Besides, 2 core targets, CALR and CALM1, were selected for molecular docking experiments. Molecular docking revealed that the main ingredient, calcium phosphate, had good binding with the CALR protein and CALM1 protein. Conclusion. To conclude, the main ingredient of the jintiange capsule, particularly calcium phosphate, may interact with 2 targets, CALR and CALM1, and regulate multiple signaling pathways to treat OP. Additionally, this also benefits us in further understanding the mechanism of the jintiange capsule for treating OP.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Zhencheng Xiong ◽  
Can Zheng ◽  
Yanan Chang ◽  
Kuankuan Liu ◽  
Li Shu ◽  
...  

Objective. The purpose of this work is to study the mechanism of action of Duhuo Jisheng Decoction (DHJSD) in the treatment of osteoporosis based on the methods of bioinformatics and network pharmacology. Methods. In this study, the active compounds of each medicinal ingredient of DHJSD and their corresponding targets were obtained from TCMSP database. Osteoporosis was treated as search query in GeneCards, MalaCards, DisGeNET, Therapeutic Target Database (TTD), Comparative Toxicogenomics Database (CTD), and OMIM databases to obtain disease-related genes. The overlapping targets of DHJSD and osteoporosis were identified, and then GO and KEGG enrichment analysis were performed. Cytoscape was employed to construct DHJSD-compounds-target genes-osteoporosis network and protein-protein interaction (PPI) network. CytoHubba was utilized to select the hub genes. The activities of binding of hub genes and key components were confirmed by molecular docking. Results. 174 active compounds and their 205 related potential targets were identified in DHJSD for the treatment of osteoporosis, including 10 hub genes (AKT1, ALB, IL6, MAPK3, VEGFA, JUN, CASP3, EGFR, MYC, and EGF). Pathway enrichment analysis of target proteins indicated that osteoclast differentiation, AGE-RAGE signaling pathway in diabetic complications, Wnt signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, JAK-STAT signaling pathway, calcium signaling pathway, and TNF signaling pathway were the specifically major pathways regulated by DHJSD against osteoporosis. Further verification based on molecular docking results showed that the small molecule compounds (Quercetin, Kaempferol, Beta-sitosterol, Beta-carotene, and Formononetin) contained in DHJSD generally have excellent binding affinity to the macromolecular target proteins encoded by the top 10 genes. Conclusion. This study reveals the characteristics of multi-component, multi-target, and multi-pathway of DHJSD against osteoporosis and provides novel insights for verifying the mechanism of DHJSD in the treatment of osteoporosis.


2020 ◽  
Author(s):  
Ben Geoffrey A S ◽  
Pavan Preetham Valluri ◽  
Akhil Sanker ◽  
Rafal Madaj ◽  
Host Antony Davidd ◽  
...  

<p>Network data is composed of nodes and edges. Successful application of machine learning/deep learning algorithms on network data to make node classification and link prediction has been shown in the area of social networks through which highly customized suggestions are offered to social network users. Similarly one can attempt the use of machine learning/deep learning algorithms on biological network data to generate predictions of scientific usefulness. In the present work, compound-drug target interaction data set from bindingDB has been used to train machine learning/deep learning algorithms which are used to predict the drug targets for any PubChem compound queried by the user. The user is required to input the PubChem Compound ID (CID) of the compound the user wishes to gain information about its predicted biological activity and the tool outputs the RCSB PDB IDs of the predicted drug target. The tool also incorporates a feature to perform automated <i>In Silico</i> modelling for the compounds and the predicted drug targets to uncover their protein-ligand interaction profiles. The programs fetches the structures of the compound and the predicted drug targets, prepares them for molecular docking using standard AutoDock Scripts that are part of MGLtools and performs molecular docking, protein-ligand interaction profiling of the targets and the compound and stores the visualized results in the working folder of the user. The program is hosted, supported and maintained at the following GitHub repository </p> <p><a href="https://github.com/bengeof/Compound2Drug">https://github.com/bengeof/Compound2Drug</a></p>


2017 ◽  
Author(s):  
Y-h. Taguchi

AbstractIdentifying drug target genes in gene expression profiles is not straightforward. Because a drug targets not mRNAs but proteins, mRNA expression of drug target genes is not always altered. In addition, the interaction between a drug and protein can be context dependent; this means that simple drug incubation experiments on cell lines do not always reflect the real situation during active disease. In this paper, I apply tensor decomposition-based unsupervised feature extraction to the integrated analysis of gene expression between heart failure and the DrugMatrix dataset where comprehensive data on gene expression during various drug treatments of rats were reported. I found that this strategy, in a fully unsupervised manner, enables us to identify a combined set of genes and compounds, for which various associations with heart failure were reported.


Sign in / Sign up

Export Citation Format

Share Document