scholarly journals Melatonin, an Endogenous Hormone, Modulates Th17 Cells via the Reactive Oxygen Species/TXNIP/HIF-1α Axis to Alleviate Autoimmune Uveitis

Author(s):  
Dan Liang ◽  
Jun Huang ◽  
Zhuang Li ◽  
Yunwei Hu ◽  
Zuoyi Li ◽  
...  

Abstract Background Melatonin, an indoleamine produced by the pineal gland, plays a pivotal role in maintaining circadian rhythm homeostasis. Recently, the strong antioxidant and anti-inflammatory properties of melatonin have attracted attention of researchers. We evaluated the therapeutic efficacy of melatonin in experimental autoimmune uveitis (EAU), which is a representative animal model of human autoimmune uveitis. Methods EAU was induced in mice via immunization with the peptide interphotoreceptor retinoid binding protein 1-20 (IRBP1−20). melatonin was then administered via intraperitoneal injection to induce protection against EAU. With EAU induction for 14 days, clinical and histopathological scores were employed to evaluate the disease progression. T lymphocytes accumulation, the expression of inflammatory cytokines in the retinas were assessed via flow cytometry and RT-PCR. In vivo and in vitro experiments, T helper 1 (Th1), T helper 17 (Th17) and regulatory T (Treg) cells were detected via flow cytometry, the level reactive oxygen species(ROS) from CD4+ cells were tested via flow cytometry, and the expression of thioredoxin-interacting protein (TXNIP) and hypoxia-inducible factor 1 alpha (HIF-1α)proteins were also quantified via western blot analysis, to elucidate the mechanism of melatonin inhibiting EAU. Results Melatonin treatment resulted in notable attenuation of ocular inflammation in EAU mice, evidenced by decreasing optic disc edema, few signs of retinal vasculitis, and minimal retinal and choroidal infiltrates. Mechanistic studies revealed that melatonin restricted the proliferation of peripheral Th1 and Th17 cells and potentiated Treg cells by suppressing their transcription factors. In vitro studies corroborated that melatonin restrains the polarization of retina-specific T cells towards Th17 and Th1 cells in addition to enhancing the proportion of Treg cells. Pretreatment of retina-specific T cells with melatonin failed to induce EAU in naïve recipients. Furthermore, the ROS/ TXNIP/ HIF-1α pathway was shown to mediate the therapeutic effect of melatonin in EAU. Conclusions Melatonin regulates autoimmune T cells by restraining effector T cells and facilitating Treg generation, indicating that melatonin could be a hopeful treatment alternative for autoimmune uveitis.

2021 ◽  
Vol 35 ◽  
pp. 205873842199808
Author(s):  
Xinjuan Liu ◽  
Yu Wu ◽  
Mengtao Li ◽  
Jianyu Hao ◽  
Qian Wang ◽  
...  

To determine the effects of Tacrolimus (FK506) on Treg cells and subpopulations in SSc patients and assess the ability of FK506 to modify the immune imbalance of Treg/Th17 cells. We analyzed PBMC from five SSc patients and six healthy control by flow cytometry after cultured with 0, 0.1, 1, or 10 ng/ml FK506 in vitro. The number of Treg cells decreased in SSc patients treated with FK506. The number of FrI cells were decreased in SSc following FK506 treatment. The drug did increase the frequency of FrII/Treg cells, but not FrII cells. However, FK506 significantly decreased FrIII in both SSc patients and controls. FK506 clearly decreased the numbers of Th17 cells and FoxP3+IL-17+ cells. The proliferation capacity of cells was also inhibited by FK506, which had a greater effect on FoxP3− cells than FoxP3+ cells. FK506 did inhibit the proliferation of FrIII cells, but not FrI or FrII cells. Our study provides that FK506 reduced the number of FoxP3low CD45RA− T cells (FrIII) by inhibiting its proliferation. Therefore, FK506 modifies Treg cells and the immune imbalance between Tregs and Th17 cells in SSc patients.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 388
Author(s):  
Xiao Dan Hui ◽  
Gang Wu ◽  
Duo Han ◽  
Xi Gong ◽  
Xi Yang Wu ◽  
...  

In this study, blueberry and blackcurrant powder were chosen as the phenolic-rich enrichments for oat bran. A Rapid Visco Analyser was used to form blueberry and blackcurrant enriched oat pastes. An in vitro digestion process evaluated the changes of phenolic compounds and the in vitro antioxidant potential of extracts of pastes. The anthocyanidin profiles in the extracts were characterised by the pH differential method. The results showed that blueberry and blackcurrant powder significantly increased the content of phenolic compounds and the in vitro antioxidant capacity of pastes, while the total flavonoid content decreased after digestion compared to the undigested samples. Strong correlations between these bioactive compounds and antioxidant values were observed. Lipopolysaccharide-stimulated RAW264.7 macrophages were used to investigate the intracellular antioxidant activity of the extracts from the digested oat bran paste with 25% enrichment of blueberry or blackcurrant powder. The results indicated that the extracts of digested pastes prevented the macrophages from experiencing lipopolysaccharide (LPS)-stimulated intracellular reactive oxygen species accumulation, mainly by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signalling pathway. These findings suggest that the bioactive ingredients from blueberry and blackcurrant powder enhanced the in vitro and intracellular antioxidant capacity of oat bran pastes, and these enriched pastes have the potential to be utilised in the development of the functional foods.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhuochao Liu ◽  
Hongyi Wang ◽  
Chuanzhen Hu ◽  
Chuanlong Wu ◽  
Jun Wang ◽  
...  

AbstractIn this study, we identified the multifaceted effects of atezolizumab, a specific monoclonal antibody against PD-L1, in tumor suppression except for restoring antitumor immunity, and investigated the promising ways to improve its efficacy. Atezolizumab could inhibit the proliferation and induce immune-independent apoptosis of osteosarcoma cells. With further exploration, we found that atezolizumab could impair mitochondria of osteosarcoma cells, resulting in increased release of reactive oxygen species and cytochrome-c, eventually leading to mitochondrial-related apoptosis via activating JNK pathway. Nevertheless, the excessive release of reactive oxygen species also activated the protective autophagy of osteosarcoma cells. Therefore, when we combined atezolizumab with autophagy inhibitors, the cytotoxic effect of atezolizumab on osteosarcoma cells was significantly enhanced in vitro. Further in vivo experiments also confirmed that atezolizumab combined with chloroquine achieved the most significant antitumor effect. Taken together, our study indicates that atezolizumab can induce mitochondrial-related apoptosis and protective autophagy independently of the immune system, and targeting autophagy is a promising combinatorial approach to amplify its cytotoxicity.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 936
Author(s):  
Olga Witkowska-Piłaszewicz ◽  
Rafał Pingwara ◽  
Jarosław Szczepaniak ◽  
Anna Winnicka

Clenbuterol, the β2-adrenoceptor agonist, is gaining growing popularity because of its effects on weight loss (i.e., chemical liposuction). It is also popular in bodybuilding and professional sports, due to its effects that are similar to anabolic steroids. However, it is prohibited by anti-doping control. On the other hand, it is suggested that clenbuterol can inhibit the inflammatory process. The cells from 14 untrained and 14 well-trained race horses were collected after acute exercise and cultured with clenbuterol. The expressions of CD4, CD8, FoxP3, CD14, MHCII, and CD5 in PBMC, and reactive oxygen species (ROS) production, as well as cell proliferation, were evaluated by flow cytometry. In addition, IL-1β, IL-4, IL-6, IL-10, IL-17, INF-γ and TNF-α concentrations were evaluated by ELISA. β2-adrenoceptor stimulation leads to enhanced anti-inflammatory properties in well-trained horses, as do low doses in untrained animals. In contrast, higher clenbuterol doses create a pro-inflammatory environment in inexperienced horses. In conclusion, β2-adrenoceptor stimulation leads to a biphasic response. In addition, the immune cells are more sensitive to drug abuse in inexperienced individuals under physical training.


2019 ◽  
Vol 20 (18) ◽  
pp. 4556 ◽  
Author(s):  
Hanna Zielinska-Blizniewska ◽  
Przemyslaw Sitarek ◽  
Anna Merecz-Sadowska ◽  
Katarzyna Malinowska ◽  
Karolina Zajdel ◽  
...  

Obesity is a complex disease of great public health significance worldwide: It entails several complications including diabetes mellitus type 2, cardiovascular dysfunction and hypertension, and its prevalence is increasing around the world. The pathogenesis of obesity is closely related to reactive oxygen species. The role of reactive oxygen species as regulatory factors in mitochondrial activity in obese subjects, molecules taking part in inflammation processes linked to excessive size and number of adipocytes, and as agents governing the energy balance in hypothalamus neurons has been examined. Phytotherapy is the traditional form of treating health problems using plant-derived medications. Some plant extracts are known to act as anti-obesity agents and have been screened in in vitro models based on the inhibition of lipid accumulation in 3T3-L1 cells and activity of pancreatic lipase methods and in in vivo high-fat diet-induced obesity rat/mouse models and human models. Plant products may be a good natural alternative for weight management and a source of numerous biologically-active chemicals, including antioxidant polyphenols that can counteract the oxidative stress associated with obesity. This review presents polyphenols as natural complementary therapy, and a good nutritional strategy, for treating obesity without serious side effects.


Drug Research ◽  
2019 ◽  
Vol 69 (10) ◽  
pp. 528-536
Author(s):  
Najat Bouchmaa ◽  
Reda Ben Mrid ◽  
Youness Boukharsa ◽  
Youssef Bouargalne ◽  
Mohamed Nhiri ◽  
...  

Abstract Background In cancer cells, the intracellular antioxidant capacity and the redox homeostasis are mainly maintained by the glutathione- and thioredoxin-dependent systems which are considered as promising targets for anticancer drugs. Pyridazinones constitute an interesting source of heterocyclic compounds for drug discovery. The present investigation focused on studying the in-vitro antitumor activity of newly synthesized Pyridazin-3(2h)-ones derivatives against P815 (Murin mastocytoma) cell line. Methods The in-vitro cytotoxic activities were investigated toward the P815 cell line using tetrazolium-based MTT assay. Lipid peroxidation and the specific activities of antioxidant enzymes were also determined. Results The newly compounds had a selective dose-dependent cytotoxic effect without affecting normal cells (PBMCs). Apoptosis was further confirmed through the characteristic apoptotic morphological changes and DNA fragmentation. Two compounds (6f and 7h) were highly cytotoxic and were submitted to extend biological testing to determine the likely mechanisms of their cytotoxicity. Results showed that these molecules may induce cytotoxicity via disturbing the redox homeostasis. Importantly, the anticancer activity of 6f and 7h could be due to the intracellular reactive oxygen species hypergeneration through significant loss of glutathione reductase and thioredoxin reductase activities. This eventually leads to oxidative stress-mediated P815 cell apoptosis. Furthermore, the co-administration of 6f or 7h with Methotrexate exhibited a synergistic cytotoxic effect. Conclusions considering their significant anticancer activity and chemosensitivity, 6f and 7h may improve the therapeutic efficacy of the current treatment for cancer.


Sign in / Sign up

Export Citation Format

Share Document