scholarly journals Processing of polymer wood composite material from pine cone and the binder of phenol formaldehyde/PVAc/molasses and improvement of its properties

Author(s):  
Melih Şahinöz ◽  
Hüseyin Yılmaz ARUNTAŞ ◽  
Metin GÜRÜ

Abstract This paper deals with the processing of polymer wood composite material from pine cone and the binder of phenol formaldehyde/PVAc/molasses and improvement of its properties. The production of pine cone based polymer binding and molasses added composite material, and the development of the non-flammability, insect attack and water resistance properties of this material has been studied in the research. To this end, pine cone, polyvinyl acetate (PVAc), phenol-formaldehyde, molasses, hemp fiber and waste colemanite have been used in the production of composite materials. It is aimed to produce a cheaper composite material less harmful to human health using plant based waste materials. According to the results of the flexural strength test conducted in the laboratory, the most suitable composite material producing parameters were detected as 0.25 filler/binder (f/b) ratio, 35% molasses ratio, 100°C molding pressure temperature, 49 kg/cm2 molding pressure, 240 µm mean particle size, 20 minutes for molding pressure time, 20% PF ratio and 0.5% hemp fiber ratio. It was determined that molasses could be used at a ratio of 35% for producing composite materials and, PF resin and hemp fiber samples provide the necessary water resistance. It was observed that the colemanite waste used in the mixture adds the nonflammability property to the composite material and decreases flexural strength and screw withdrawal strength.

2020 ◽  
Vol 34 (07n09) ◽  
pp. 2040010
Author(s):  
Hsu-Chiang Kuan ◽  
Chin-Lung Chiang ◽  
Ming-Yuan Shen ◽  
Chen-Feng Kuan

In this study, we combine the coffee slag, metal powder with recycled petrochemical plastics (polystyrene, PS) to prepare circulation composite materials. It is an energy saving and carbon footprint reduction composite material compared with traditional one. The resulted PS/coffee composite has tensile strength 117.5 kgf/cm2 and flexural strength is 314.2 kgf/cm2. The heat deflection temperature (HDT) is 92[Formula: see text]C and the UV test fits the ASTM G154 requirement. The metal gross composite is with tensile strength 318.8 kgf/cm2 and flexural strength is 581.6 kgf/cm2. The HDT is 91[Formula: see text]C and the UV test fits the ASTM G154 requirement as well. Its reuse ratio can reach 85% for recycled PS. The resultant product has metal texture blinds with metal gross and wood-like blinds with coffee aroma flavor.


2014 ◽  
Vol 1662 ◽  
Author(s):  
Lik-ho Tam ◽  
Denvid Lau

ABSTRACTOrganic composite materials can be readily found in our daily life, such as plywood used in construction industry and bamboo composites as indoor and outdoor flooring materials. These organic composite material systems consist of cellulose fibers bonded with each other through adhesives, leading to a bonded system with a gradient structure that possesses a unique structural behavior which has a great potential to be used as load-bearing building materials. In view of the manufacturing process of such composite material systems and the structure in-between the cellulose fibers and the adhesives, the interfacial adhesion of such systems at multiscale would play a major role in determining their capability in load-bearing structural applications. In this research work, the interface between cellulose fiber and phenol-formaldehyde adhesive is chosen as a representative of the organic composite material system and molecular dynamics simulation is used for quantifying their mechanical properties and the corresponding interfacial adhesion. Here we demonstrate that cellulose fiber has a strong affinity to a phenol-formaldehyde adhesive with an adhesion energy of 151.3 mJ/m2. To the best of our knowledge, this is the first study that reports this material property for cellulose-adhesive system, which is three times larger than that between the gecko foot’s hair and the mineral surface. The mechanism of such strong adhesion is due to the possible hydrogen bonding between the cellulose and the adhesive.


2020 ◽  
Vol 2 (2) ◽  
pp. 170-174

Human health and environmental comfort are disturbed by the presence of noise, especially in cars, so that effective sound-absorbing materials are currently being developed. To answer the problem of noise in car interiors, polyester composite materials with local hemp fiber and nanocellulose reinforcement were developed. Natural fiber is biodegradable and renewable, and acts as an alternative to the use of synthetic fibers. The method used for the composite material manufacturing process was the casting method. The matrix of the composite material was polyester, while the reinforcement was a combination of local hemp fiber and nanocellulose fiber. Alkalization and non-alkalization processes have been carried out on hemp fiber. The composition of nanocellulose was 0%, 1%, and 3%. The characterization applied in this research were SEM test, FTIR test, sound transmission loss test, and density test. Optimal results were obtained on hemp fiber reinforced polyester composite materials without alkalization and without nanocellulose. Sound transmission loss (STL) was 61.91 dB up to 68.52 dB for the frequency range of 630 Hz to 125 Hz. The standard noise limit on 8-passenger passenger's four-wheeled vehicles is 77-80 dB. Based on the results obtained, the sound absorption is good. The density of this composite material was obtained at 0.989 gram/cm3. This composite material has the potential for developing dashboard material.


2009 ◽  
Vol 620-622 ◽  
pp. 433-436 ◽  
Author(s):  
Peng Liu ◽  
Hui Cheng Shi ◽  
Hai Yun Jin ◽  
Nai Kui Gao ◽  
Zong Ren Peng

Reinforcement was performed to epoxy resin by CaCO3 whisker, and the effect of flexural property of CaCO3 whisker reinforced composite materials was studied. The microstructures of the composite materials were observed by SEM. The results showed that the flexural strength of the composites increased with increasing CaCO3 whisker content, and the flexural strength reached to the maximum value when CaCO3 whisker content was about 15wt.%, and the maximum value was about 11% higher than that of pure epoxy resin. But, the strength would drop sharply with the excessive CaCO3 whisker.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bing Shen ◽  
HongJun Liu ◽  
Shengli Lv ◽  
Zheng Li ◽  
Wen Cheng

The purpose of this investigation is to study the performance degradation mechanism of CRRP composite materials used in the structure of a solar UAV under acid rain environment and to provide references for the structural design of the solar UAV. An aging test was designed according to the actual working conditions of the solar unmanned aerial vehicle and was carried out by continuously immersing the composite material in both deionized water and an acidic solution with a pH of 2.0 at 60°C. The mechanical behavior of the composites was studied through a three-point bending test. The results showed that after 120 days of aging test, the composite material exhibits different characteristics in the two conditions. The composite material under the hygrothermal conditions finally reached the equilibrium moisture absorption content of 1.07%, and the flexural strength decreased by 8.77%. The composite material under acidic conditions deviated from the Fick behavior in the final stage of the test, and the final moisture content was 2.88%, and the bending strength decreased by 26.43%. Several typical empirical models were analyzed, and a hyperbolic tangent function empirical model with moisture content as the main variable was used to predict the CFRP flexural strength degradation process, and good results were obtained. The effect of aging conditions on the microstructure of composite materials was observed by SEM, and the aging mechanism of composite materials was analyzed. The corrosion of the polymer matrix and the debonding of the fiber/matrix interface are the root causes of the performance degradation of composite materials.


2020 ◽  
Vol 12 ◽  
Author(s):  
Alexandra Atyaksheva ◽  
Yermek Sarsikeyev ◽  
Anastasia Atyaksheva ◽  
Olga Galtseva ◽  
Alexander Rogachev

Aims:: The main goals of this research are exploration of energy-efficient building materials when replacing natural materials with industrial waste and development of the theory and practice of obtaining light and ultra-light gravel materials based on mineral binders and waste dump ash and slag mixtures of hydraulic removal. Background.: Experimental data on the conditions of formation of gravel materials containing hollow aluminum and silica microsphere with opportunity of receipt of optimum structure and properties depending on humidity with the using of various binders are presented in this article. This article dwells on the scientific study of opportunity physical-mechanical properties of composite materials optimization are considered. Objective.: Composite material contains hollow aluminum and silica microsphere. Method.: The study is based on the application of the method of separation of power and heat engineering functions. The method is based on the use of the factor structure optimality, which takes into account the primary and secondary stress fields of the structural gravel material. This indicates the possibility of obtaining gravel material with the most uniform distribution of nano - and microparticles in the gravel material and the formation of stable matrices with minimization of stress concentrations. Experiments show that the thickness of the cement shell, which performs power functions, is directly related to the size of the raw granules. At the same time, the thickness of the cement crust, regardless of the type of binder, with increasing moisture content has a higher rate of formation for granules of larger diameter. Results.: The conditions for the formation of gravel composite materials containing a hollow aluminosilicate microsphere are studied. The optimal structure and properties of the gravel composite material were obtained. The dependence of the strength function on humidity and the type of binder has been investigated. The optimal size and shape of binary form of gravel material containing a hollow aluminosilicate microsphere with a minimum thickness of a cement shell and a maximum strength function was obtained. Conclusion.: Received structure allows to separate power and heat engineering functions in material and to minimize the content of the excited environment centers.


Author(s):  
Jiyuan Fan ◽  
Chengkun Xiao ◽  
Jinlin Mei ◽  
Cong Liu ◽  
Aijun Duan ◽  
...  

CoMo series catalysts based on ZSM-22/PHTS (ZP) composite materials with different SiO2/Al2O3 molar ratios were prepared via the impregnation method. The properties of the ZP material and the corresponding catalysts...


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 145
Author(s):  
Lesław Kyzioł ◽  
Katarzyna Panasiuk ◽  
Grzegorz Hajdukiewicz ◽  
Krzysztof Dudzik

Due to the unique properties of polymer composites, these materials are used in many industries, including shipbuilding (hulls of boats, yachts, motorboats, cutters, ship and cooling doors, pontoons and floats, torpedo tubes and missiles, protective shields, antenna masts, radar shields, and antennas, etc.). Modern measurement methods and tools allow to determine the properties of the composite material, already during its design. The article presents the use of the method of acoustic emission and Kolmogorov-Sinai (K-S) metric entropy to determine the mechanical properties of composites. The tested materials were polyester-glass laminate without additives and with a 10% content of polyester-glass waste. The changes taking place in the composite material during loading were visualized using a piezoelectric sensor used in the acoustic emission method. Thanks to the analysis of the RMS parameter (root mean square of the acoustic emission signal), it is possible to determine the range of stresses at which significant changes occur in the material in terms of its use as a construction material. In the K-S entropy method, an important measuring tool is the extensometer, namely the displacement sensor built into it. The results obtained during the static tensile test with the use of an extensometer allow them to be used to calculate the K-S metric entropy. Many materials, including composite materials, do not have a yield point. In principle, there are no methods for determining the transition of a material from elastic to plastic phase. The authors showed that, with the use of a modern testing machine and very high-quality instrumentation to record measurement data using the Kolmogorov-Sinai (K-S) metric entropy method and the acoustic emission (AE) method, it is possible to determine the material transition from elastic to plastic phase. Determining the yield strength of composite materials is extremely important information when designing a structure.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 178
Author(s):  
Valerio Acanfora ◽  
Roberto Petillo ◽  
Salvatore Incognito ◽  
Gerardo Mario Mirra ◽  
Aniello Riccio

This work provides a feasibility and effectiveness analysis, through numerical investigation, of metal replacement of primary components with composite material for an executive aircraft wing. In particular, benefits and disadvantages of replacing metal, usually adopted to manufacture this structural component, with composite material are explored. To accomplish this task, a detailed FEM numerical model of the composite aircraft wing was deployed by taking into account process constraints related to Liquid Resin Infusion, which was selected as the preferred manufacturing technique to fabricate the wing. We obtained a geometric and material layup definition for the CFRP components of the wing, which demonstrated that the replacement of the metal elements with composite materials did not affect the structural performance and can guarantee a substantial advantage for the structure in terms of weight reduction when compared to the equivalent metallic configuration, even for existing executive wing configurations.


2012 ◽  
Vol 496 ◽  
pp. 281-284
Author(s):  
Wen Wen Liu ◽  
Zhi Wang ◽  
Yun Hai Du ◽  
Xian Zhong Xu ◽  
Da Quan Liu ◽  
...  

An improved accurate speckle projection method is used for study the mechanical properties of the composite material film in the paper. A system for deformation measurement is developed with the telecentric lenses, in which such conventional lens’ disadvantages such as lens distortion and perspective error will be diminished. Experiments are performed to validate the availability and reliability of the calibration method. The system can also be used to measure the dynamic deformation and then results are also given.


Sign in / Sign up

Export Citation Format

Share Document