scholarly journals Prognostic Biomarker MUC4 Mutations in Colon Adenocarcinoma Correlating with Tumor Microenvironment

Author(s):  
Ting Li ◽  
Wenjia Hui ◽  
Feng Gao

Abstract Background: Immunotherapy is a new strategy for Colorectal cancer (CRC) treatment. Tumor mutation burden (TMB) may act as an emerging biomarker for predicting responses to immunotherapy. Nevertheless, no studies investigate if these gene mutations correlate to TMB and tumor-infiltrating immune cells. Methods: Somatic mutation data for CRC samples were obtained from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) datasets. Then, we investigated the relationship between these mutant genes, TMB and overall survival outcomes. GSEA analysis was performed to explore the underlying mechanism of mutant gene. Finally, we further verified the connection between gene mutations and immune response.Results: We identified 17 common mutant genes shared by both two cohorts. Further analysis found that MUC4 mutation was strongly related to higher TMB and predicted a poorer prognosis. Moreover, functional enrichment analysis of samples with MUC4 mutation revealed that they were involved in regulating the natural killer cell mediated cytotoxicity signaling pathway. Significant changes in the proportion of the immune cells of CD8+ T cells, activated NK cells, M1 macrophages and resting memory CD4+ T cells were observed using the CIBERSORT algorithm. Conclusions: Our research revealed that MUC4 mutation significantly correlated with increased TMB, a worse prognosis and modulating the immune microenvironment, which may be considered a biomarker to predict the outcome of the immune response in colorectal cancer.

2020 ◽  
Author(s):  
Ting Li ◽  
Wenjia Hui ◽  
Halina Halike ◽  
Feng Gao

Abstract Background: Immunotherapy is a new strategy for Colorectal cancer (CRC) treatment. Tumor mutation burden (TMB) may act as an emerging biomarker for predicting responses to immunotherapy. Nevertheless, no studies investigate if these gene mutations correlate to TMB and tumor-infiltrating immune cells. Methods: Somatic mutation data for CRC samples were obtained from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) datasets. Then, we investigated the relationship between these mutant genes, TMB and overall survival outcomes. GSEA analysis was performed to explore the underlying mechanism of mutant gene. Finally, we further verified the connection between gene mutations and immune response.Results: We identified 17 common mutant genes shared by both two cohorts. Further analysis found that MUC4 mutation was strongly related to higher TMB and predicted a poorer prognosis. Moreover, functional enrichment analysis of samples with MUC4 mutation revealed that they were involved in regulating the natural killer cell mediated cytotoxicity signaling pathway. Significant changes in the proportion of the immune cells of CD8 T cells, activated NK cells, M1 macrophages and resting memory CD4 T cells were observed using the CIBERSORT algorithm. Conclusions: Our research revealed that MUC4 mutation significantly correlated with increased TMB, a worse prognosis and modulating the immune microenvironment, which may be considered a biomarker to predict the outcome of the immune response in colorectal cancer.


2020 ◽  
Vol 10 (6) ◽  
pp. 1338-1345
Author(s):  
Ying Zhu ◽  
Bo Hu ◽  
Long Xu ◽  
Lili Yang ◽  
Congjie Wang ◽  
...  

Background/Aims: Neoantigens are peptides produced by translation of mutant exons and existed in tumor tissues instead of normal tissues, thus, we desired to investigate the antigenic peptide epitopes of cancerspecific neoantigen, to detect the affinity of the nonapeptide with the corresponding Human Leukocyte Antigen I (HLA I) allele molecule, in order to understand the relationship of mutant exon genes of Colorectal Cancer (CRC) patients and the drive genes that are currently known for tumorigenesis of CRC. Methods: The next generation sequencing (NGS) method was used to detect the whole genome sequence and HLA I allele types of tumor tissues and adjacent tissues of 5 CRC patients. pVAC-Seq was applied to identify the nascent nonapeptides generated from exon mutations. The affinity of polypeptides with respective HLA I molecules in CRC was calculated by using NETMHC 4.0 Server. The molecular localization, molecular function, and signal pathways of mutant genes in 5 CRC patients were performed by FunRich 3.1.3 software. The TIMER website was applied to predict the analysis of intratumoral immune cell infiltration associated with the gene mutations in 5 CRC patients. Results: Fifty-six tumor-specific neo-nonapeptides were predicted from 54 different exon gene mutations. The 56 tumor new nonapeptide sequences were different from the shared motif of the HLA I allele. We explored that the tumor-specific nascent nonapeptide mainly bound to HLA-A.02*03, HLA-B.58*01 and HLA-B.11*01, and the affinity analysis results suggested that 14 of the nonapeptides had strong binding force, 20 nonapeptides had weak binding force, and 22 nonapeptides had no binding force. 54 mutant exons of 5 CRC patients were chiefly located in Leading edge membrane, Fanconi anaemia nuclear complex, and Azurophil granule. The molecular functions of these genes were involved in DNA-directed DNA polymerase activity, Vitamin or cofactor transporter activity, and Receptor signaling protein tyrosine kinase activity. 54 gene mutations had key roles in Translesion synthesis by Pol zeta, Translesion synthesis by DNA polymerases bypassing lesion on DNA template, and DNA Damage Bypass. We found that the mutant FMN2 had more infiltration of CD8+ T cells in the tumor than the wild type, and the mutant ZNF717 had more infiltration of CD8+ T cells and neutrophils in the tumor than the wild type, the difference was statistically significant. Conclusion: This study provides a preliminary result to illustrate that the prediction and bioinformatics feature of tumor-specific new nine-peptide-epitopes in CRC. It is hoped that the cancer-specific neoantigen will be used for adjuvant immunotherapy after radical surgery of colorectal cancer, and the mutant genes of CRC can also be used as landmarks for postoperative recurrence and metastasis of colorectal cancer.


2020 ◽  
Vol 11 ◽  
Author(s):  
Han Nie ◽  
Jiacong Qiu ◽  
Si Wen ◽  
Weimin Zhou

Approximately 13,000 people die of an abdominal aortic aneurysm (AAA) every year. This study aimed to identify the immune response-related genes that play important roles in AAA using bioinformatics approaches. We downloaded the GSE57691 and GSE98278 datasets related to AAA from the Gene Expression Omnibus database, which included 80 AAA and 10 normal vascular samples. CIBERSORT was used to analyze the samples and detect the infiltration of 22 types of immune cells and their differences and correlations. The principal component analysis showed significant differences in the infiltration of immune cells between normal vascular and AAA samples. High proportions of CD4+ T cells, activated mast cells, resting natural killer cells, and 12 other types of immune cells were found in normal vascular tissues, whereas high proportions of macrophages, CD8+ T cells, resting mast cells, and six other types of immune cells were found in AAA tissues. In the selected samples, we identified 39 upregulated (involved in growth factor activity, hormone receptor binding, and cytokine receptor activity) and 133 downregulated genes (involved in T cell activation, cell chemotaxis, and regulation of immune response mediators). The key differentially expressed immune response-related genes were screened using the STRING database and Cytoscape software. Two downregulated genes, PI3 and MAP2K1, and three upregulated genes, SSTR1, GPER1, and CCR10, were identified by constructing a protein–protein interaction network. Functional enrichment of the differentially expressed genes was analyzed, and the expression of the five key genes in AAA samples was verified using quantitative polymerase chain reaction, which revealed that MAP2K1 was downregulated in AAA, whereas SSTR1, GEPR1, and CCR10 were upregulated; there was no significant difference in PI3 expression. Our study shows that normal vascular and AAA samples can be distinguished via the infiltration of immune cells. Five genes, PI3, MAP2K1, SSTR1, GPER1, and CCR10, may play important roles in the development, diagnosis, and treatment of AAA.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhiquan Xu ◽  
Ling Xiang ◽  
Rong Wang ◽  
Yongfu Xiong ◽  
He Zhou ◽  
...  

Background. Currently, immunotherapy is widely used for breast cancer (BC) patients, and tumor mutation burden (TMB) is regarded as a valuable independent predictor of response to immunotherapy. However, specific gene mutations and their relationship with TMB and tumor-infiltrating immune cells in BC are not fully understood. Methods. Comprehensive bioinformatic analyses were performed using data from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets. Survival curves were analyzed via Kaplan-Meier analysis. Univariate and multivariate Cox regression analyses were used for prognosis analysis. Gene set enrichment analysis (GSEA) was performed to explore regulatory mechanisms and functions. The CIBERSORT algorithm was used to calculate the tumor-infiltrating immune cell fractions. Results. We analyzed somatic mutation data of BC from TCGA and ICGC datasets and found that 19 frequently mutated genes were reported in both cohorts, namely, SPTA1, TTN, MUC17, MAP3K1, CDH1, FAT3, SYNE1, FLG, HMCN1, RYR2 (ryanodine receptor 2), GATA3, MUC4, PIK3CA, KMT2C, TP53, PTEN, ZFHX4, MUC16, and USH2A. Among them, we observed that RYR2 mutation was significantly associated with higher TMB and better clinical prognosis. Moreover, GSEA revealed that RYR2 mutation-enriched signaling pathways were related to immune-associated pathways. Furthermore, based on the CIBERSORT algorithm, we found that RYR2 mutation enhanced the antitumor immune response by enriching CD8+ T cells, activated memory CD4+ T cells, and M1 macrophages. Conclusion. RYR2 is frequently mutated in BC, and its mutation is related to increased TMB and promotes antitumor immunity; thus, RYR2 may serve as a valuable biomarker to predict the immune response.


2020 ◽  
Vol 10 ◽  
Author(s):  
Bingnan Chen ◽  
Di Wang ◽  
Jiapo Li ◽  
Yue Hou ◽  
Chong Qiao

BackgroundEndometrioid endometrial adenocarcinoma (EEA) is one of the most common tumors in the female reproductive system. With the further understanding of immune regulation mechanism in tumor microenvironment, immunotherapy is emerging in tumor treatment. However, there are few systematic studies on EEA immune infiltration.MethodsIn this study, prognostic tumor-infiltrating immune cells (TIICs) and related genes of EEA were comprehensively analyzed for the first time through the bioinformatics method with CIBERSORT algorithm as the core. Gene expression profile data were downloaded from the TCGA database, and the abundance ratio of TIICs was obtained. Kaplan–Meier analysis and Cox regression analysis were used to identify prognostic TIICs. EEA samples were grouped according to the risk score in Cox regression model. Differential analysis and functional enrichment analyses were performed on high- and low-risk groups to find survival-related hub genes, which were verified by Tumor Immune Estimation Resource (TIMER).ResultFour TIICs including memory CD4+ T cells, regulatory T cells, natural killer cells and dendritic cells were identified. And two hub gene modules were found, in which six hub genes including APOL1, CCL17, RBP4, KRT15, KRT71, and KRT79 were significantly related to overall survival and were closely correlated with some certain TIICs in the validation of TIMER.ConclusionIn this study, four prognostic TIICs and six hub genes were found to be closely related to EEA. These findings provided new potential targets for EEA immunotherapy.


2020 ◽  
Author(s):  
Daojia Miao ◽  
Jian Shi ◽  
Zhiyong Xiong ◽  
Changfei Yuan ◽  
Wen Xiao ◽  
...  

Abstract Background: clear cell renal cell carcinoma (ccRCC) is one of the most lethal kinds of malignancies in urinary system and the existing immunotherapy have not achieved satisfactory outcomes. Therefore, this study aims to establish a brand-new gene signature for immune-infiltration and clinical outcome (overall survival and immunotherapy responsiveness) of patients with ccRCC. Methods: Based on RNA sequencing data and clinical information in the Cancer Genome Atlas Project (TCGA) database, we investigated proportions of immune cells in 611 samples by an online tool CIBERSORTx. Multivariate survival analysis was used to determine crucial survival-associated immune cells and immune-infiltration-related genes (IIRGs). Next ROC analysis was carried on to evaluate the ability of IIRGs to distinguish patients and functional enrichment analysis were implemented to explore potential interaction network between immune cells and IIRGs. Results: T cells follicular helper (TFHs) and T cells regulatory (Tregs) were highly infiltrated in the tumor microenvironment and their abundance ratios were independent prognostic factors for overall survival. Among IIRGs of TFHs and TREGs, RUFY4 was found to be highly activated in tumor microenvironment and its co-expression network was enriched in regulation of T cells via cytokine-cytokine receptor interactions.Conclusion: These two cells and RUFY4, considered prognostic biomarkers and immunotherapeutic predictors of ccRCC patients, might also simultaneously affect the regulatory network in tumor microenvironment (TME) through cytokine interactions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247233
Author(s):  
Apryl S. Saunders ◽  
Dawn E. Bender ◽  
Anita L. Ray ◽  
Xiangyan Wu ◽  
Katherine T. Morris

Colorectal cancer is the 2nd leading cause of cancer-related deaths in the world. The mechanisms underlying CRC development, progression, and resistance to treatment are complex and not fully understood. The immune response in the tumor microenvironment has been shown to play a significant role in many cancers, including colorectal cancer. Colony-stimulating factor 3 (CSF3) has been associated with changes to the immune environment in colorectal cancer animal models. We hypothesized that CSF3 signaling would correlate with pro-tumor tumor microenvironment changes associated with immune infiltrate and response. We utilized publicly available datasets to guide future mechanistic studies of the role CSF3 and its receptor (CSF3R) play in colorectal cancer development and progression. Here, we use bioinformatics data and mRNA from patients with colon (n = 242) or rectal (n = 92) cancers, obtained from The Cancer Genome Atlas Firehose Legacy dataset. We examined correlations of CSF3 and CSF3R expression with patient demographics, tumor stage and consensus molecular subtype classification. Gene expression correlations, cell type enrichment, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data scores and Gene Ontology were used to analyze expression of receptor and ligand, tumor microenvironment infiltration of immune cells, and alterations in biological pathways. We found that CSF3 and CSF3R expression is highest in consensus molecular subtype 1 and consensus molecular subtype 4. Ligand and receptor expression are also correlated with changes in T cell and macrophage signatures. CSF3R significantly correlates with a large number of genes that are associated with poor colorectal cancer prognosis.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7993 ◽  
Author(s):  
Linhai Li ◽  
Yiming Ouyang ◽  
Wenrong Wang ◽  
Dezhi Hou ◽  
Yu Zhu

Background Gastric cancer (GC) is the fourth most frequently diagnosed malignancy and the second leading cause of cancer-associated mortality worldwide. The tumor microenvironment, especially tumor-infiltrating immune cells (TIICs), exhibits crucial roles both in promoting and inhibiting cancer growth. The aim of the present study was to evaluate the landscape of TIICs and develop a prognostic nomogram in GC. Materials and Methods A gene expression profile obtained from a dataset from The Cancer Genome Atlas (TCGA) was used to quantify the proportion of 22 TIICs in GC by the CIBERSORT algorithm. LASSO regression analysis and multivariate Cox regression were applied to select the best survival-related TIICs and develop an immunoscore formula. Based on the immunoscore and clinical information, a prognostic nomogram was built, and the predictive accuracy of it was evaluated by the area under the curve (AUC) of the receiver operating characteristic curve (ROC) and the calibration plot. Furthermore, the nomogram was validated by data from the International Cancer Genome Consortium (ICGC) dataset. Results In the GC samples, macrophages (25.3%), resting memory CD4 T cells (16.2%) and CD8 T cells (9.7%) were the most abundant among 22 TIICs. Seven TIICs were filtered out and used to develop an immunoscore formula. The AUC of the prognostic nomogram in the TCGA set was 0.772, similar to that in the ICGC set (0.730) and whole set (0.748), and significantly superior to that of TNM staging alone (0.591). The calibration plot demonstrated an outstanding consistency between the prediction and actual observation. Survival analysis revealed that patients with GC in the high-immunoscore group exhibited a poor clinical outcome. The result of multivariate analysis revealed that the immunoscore was an independent prognostic factor. Discussion The immunoscore could be used to reinforce the clinical outcome prediction ability of the TNM staging system and provide a convenient tool for risk assessment and treatment selection for patients with GC.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tian-Yu Lei ◽  
Ying-Ze Ye ◽  
Xi-Qun Zhu ◽  
Daniel Smerin ◽  
Li-Juan Gu ◽  
...  

AbstractThrough considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lijun Xu ◽  
Qing Zheng

Abstract Background Tumor mutational burden (TMB) is a promising predictor, which could stratify colorectal cancer (CRC) patients based on the response to immune checkpoint inhibitors (ICIs). MicroRNAs (miRNAs) act as the key regulators of anti-cancer immune response. However, the relationship between TMB and miRNA expression profiles is not elucidated in CRC. Methods Differentially expressed miRNAs (DE miRNAs) between the TMBhigh group and the TMBlow group were identified for the CRC cohort of the TCGA database. In the training cohort, a miRNA-related expression signature for predicting TMB level was developed by the least absolute shrinkage and selection operator (LASSO) method and tested with reference to its discrimination, calibration, and decision curve analysis (DCA) in the validation cohort. Functional enrichment analysis of these TMB-related miRNAs was performed. The correlation between this miRNA-related expression signature and three immune checkpoints was analyzed. Results Twenty-one out of 43 DE miRNAs were identified as TMB-related miRNAs, which were used to develop a miRNA-related expression signature. This TMB-related miRNA signature demonstrated great discrimination (AUCtest set = 0.970), satisfactory calibration (P > 0.05), and clinical utility in the validation cohort. Functional enrichment results revealed that these TMB-related miRNAs were mainly involved in biological processes associated with immune response and signaling pathways related with cancer. This miRNA-related expression signature showed a median positive correlation with PD-L1 (R = 0.47, P < 0.05) and CTLA4 (R = 0.39, P < 0.05) and a low positive correlation with PD-1 (R = 0.16, P < 0.05). Conclusion This study presents a miRNA-related expression signature which could stratify CRC patients with different TMB levels.


Sign in / Sign up

Export Citation Format

Share Document