scholarly journals Crosstalk of gut microbiota and serum/hippocampus metabolites in neurobehavioral impairments induced by oral zinc oxide nanoparticles exposure

2020 ◽  
Author(s):  
jianjun Chen ◽  
Shanshan Zhang ◽  
Chang Chen ◽  
Xuejun Jiang ◽  
Jingfu Qiu ◽  
...  

Abstract Background Gut microbiome can be readily influenced by external factors, such as diet, antibiotic, bacterial/viral infection and environmental toxicants. Gut microbiota-mediated effects of engineered nanomaterials as such become the new frontiers in nanotoxicology. Methods An integrated approach combining 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) metabolomics was used to determine the potential mechanistic pathway by which disturbed gut microbiota induced by ZnONPs might modulate host physiology and neurobehavior. Results Herein, we showed oral exposure to zinc oxide nanoparticles (ZnONPs), one typical kinds of nanomaterials used widely in the food industry, could cause the neurobehavioral dysfunctions in mice, manifested by spatial learning and memory deficits and locomotor activity inhibition. Our mechanistic results elucidated that ZnONPs exposure led to a marked disturbance of gut microbial composition but did not alter the microbiome α-diversity indexes. We also provided new evidence that neurobehavioral impairments induced by ZnONPs was closely associated with perturbation in the gut microbiota composition that were both specific to changes of neurobehavior-related genes (such as Bdnf and Dlg4 ) and correlated with serum and hippocampal metabolic disorders. Our data further identified a unique metabolite [DG(15:0/0:0/22:4n6)] that linked the relationships among gut microbiota, metabolites and neurobehavior-related genes. Conclusions ZnONPs exposure not only alters the gut microbiome community but also substantially disturbs its metabolic profiles, and therefore leading to neurobehavioral impairments vi gut-brain axis. These findings will provide a novel view for understanding the ZnONPs neurotoxicity through gut-brain axis and may lead to new potential prevention and treatment strategies.

2021 ◽  
Author(s):  
Artur Trzebny ◽  
Anna Slodkowicz-Kowalska ◽  
Johanna Björkroth ◽  
Miroslawa Dabert

AbstractThe animal gut microbiota consist of many different microorganisms, mainly bacteria, but archaea, fungi, protozoans, and viruses may also be present. This complex and dynamic community of microorganisms may change during parasitic infection. In the present study, we investigated the effect of the presence of microsporidians on the composition of the mosquito gut microbiota and linked some microbiome taxa and functionalities to infections caused by these parasites. We characterised bacterial communities of 188 mosquito females, of which 108 were positive for microsporidian DNA. To assess how bacterial communities change during microsporidian infection, microbiome structures were identified using 16S rRNA microbial profiling. In total, we identified 46 families and four higher taxa, of which Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae and Pseudomonadaceae were the most abundant mosquito-associated bacterial families. Our data suggest that the mosquito gut microbial composition varies among host species. In addition, we found a correlation between the microbiome composition and the presence of microsporidians. The prediction of metagenome functional content from the 16S rRNA gene sequencing suggests that microsporidian infection is characterised by some bacterial species capable of specific metabolic functions, especially the biosynthesis of ansamycins and vancomycin antibiotics and the pentose phosphate pathway. Moreover, we detected a positive correlation between the presence of microsporidian DNA and bacteria belonging to Spiroplasmataceae and Leuconostocaceae, each represented by a single species, Spiroplasma sp. PL03 and Weissella cf. viridescens, respectively. Additionally, W. cf. viridescens was observed only in microsporidian-infected mosquitoes. More extensive research, including intensive and varied host sampling, as well as determination of metabolic activities based on quantitative methods, should be carried out to confirm our results.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jade E. Kenna ◽  
Eng Guan Chua ◽  
Megan Bakeberg ◽  
Alfred Tay ◽  
Sarah McGregor ◽  
...  

Background: There has been increasing recognition of the importance of the gut microbiome in Parkinson’s disease (PD), but the influence of geographic location has received little attention. The present study characterized the gut microbiota and associated changes in host metabolic pathways in an Australian cohort of people with PD (PwP).Methods: The study involved recruitment and assessment of 87 PwP from multiple Movement Disorders Clinics in Australia and 47 healthy controls. Illumina sequencing of the V3 and V4 regions of the 16S rRNA gene was used to distinguish inter-cohort differences in gut microbiota; KEGG analysis was subsequently performed to predict functional changes in host metabolic pathways.Results: The current findings identified significant differences in relative abundance and diversity of microbial operational taxonomic units (OTUs), and specific bacterial taxa between PwP and control groups. Alpha diversity was significantly reduced in PwP when compared to controls. Differences were found in two phyla (Synergistetes and Proteobacteria; both increased in PwP), and five genera (Colidextribacter, Intestinibacter, Kineothrix, Agathobaculum, and Roseburia; all decreased in PwP). Within the PD cohort, there was no association identified between microbial composition and gender, constipation or use of gastrointestinal medication. Furthermore, KEGG analysis identified 15 upregulated and 11 downregulated metabolic pathways which were predicted to be significantly altered in PwP.Conclusion: This study provides the first comprehensive characterization of the gut microbiome and predicted functional metabolic effects in a southern hemisphere PD population, further exploring the possible mechanisms whereby the gut microbiota may exert their influence on this disease, and providing evidence for the incorporation of such data in future individualized therapeutic strategies.


2012 ◽  
pp. 3203 ◽  
Author(s):  
Seok Tae Lim ◽  
Hwan jeong Jeong ◽  
Dong Wook Kim ◽  
Seok Tae Lim ◽  
Myung Hee Sohn ◽  
...  

2021 ◽  
pp. 1-16
Author(s):  
Manal A. M. Mahmoud ◽  
Doha Yahia ◽  
Doaa S. Abdel-Magiud ◽  
Madeha H. A. Darwish ◽  
Mahmoud Abd-Elkareem ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 884
Author(s):  
Temoor Ahmed ◽  
Zhifeng Wu ◽  
Hubiao Jiang ◽  
Jinyan Luo ◽  
Muhammad Noman ◽  
...  

Burkholderia glumae and B. gladioli are seed-borne rice pathogens that cause bacterial panicle blight (BPB) disease, resulting in huge rice yield losses worldwide. However, the excessive use of chemical pesticides in agriculture has led to an increase in environmental toxicity. Microbe-mediated nanoparticles (NPs) have recently gained significant attention owing to their promising application in plant disease control. In the current study, we biologically synthesize zinc oxide nanoparticles (ZnONPs) from a native Bacillus cereus RNT6 strain, which was taxonomically identified using 16S rRNA gene analysis. The biosynthesis of ZnONPs in the reaction mixture was confirmed by using UV–Vis spectroscopy. Moreover, XRD, FTIR, SEM-EDS, and TEM analysis revealed the functional groups, crystalline nature, and spherical shape of ZnONPs with sizes ranging from 21 to 35 nm, respectively. Biogenic ZnONPs showed significant antibacterial activity at 50 µg mL−1 against B. glumae and B. gladioli with a 2.83 cm and 2.18 cm zone of inhibition, respectively, while cell numbers (measured by OD600) of the two pathogens in broth culture were reduced by 71.2% and 68.1%, respectively. The ultrastructure studies revealed the morphological damage in ZnONPs-treated B. glumae and B. gladioli cells as compared to the corresponding control. The results of this study revealed that ZnONPs could be considered as promising nanopesticides to control BPB disease in rice.


2019 ◽  
Author(s):  
Erica Grant ◽  
Randall C. Kyes ◽  
Pensri Kyes ◽  
Pauline Trinh ◽  
Vickie Ramirez ◽  
...  

AbstractTraditional zoonotic disease research focuses on detection of recognized pathogens and may miss opportunities to understand broader microbial transmission dynamics between humans, animals, and the environment. We studied human-macaque microbiome overlap in Kosum Phisai District, Maha Sarakham Province, Thailand, where a growing population of long-tailed macaques (Macaca fascicularis) in Kosumpee Forest Park interact with humans from an adjacent village. We surveyed workers in or near the park with elevated exposure to macaques to characterize tasks resulting in exposure to macaque feces in addition to dietary and lifestyle factors that influence gut microbiome composition. Fecal samples were collected from 12 exposed workers and 6 controls without macaque exposure, as well as 8 macaques from Kosumpee Forest Park and 4 from an isolated forest patch with minimal human contact. The V4 region of the 16S rRNA gene from fecal sample extracted DNA was amplified and sequenced using Illumina HiSeq to characterize the microbial community. A permuted betadisper test on the weighted UniFrac distances revealed significant differences in the dispersion patterns of gut microbiota from exposed and control macaques (p=0.03). The high variance in gut microbiota composition of macaques in contact with humans has potential implications for gut microbiome stability and susceptibility to disease, described by the Anna Karenina principle (AKP). Human samples had homogenous variance in beta diversity but different spatial medians between groups (p=0.02), indicating a shift in microbial composition that may be explained by fundamental lifestyle differences between the groups unrelated to exposure status. SourceTracker was used to estimate the percent of gut taxa in exposed humans that was contributed by macaques. While one worker showed evidence of elevated contribution, the overall trend was not significant. Task observations among workers revealed opportunities to employ protective measures or training to reduce exposure to occupational hazards. These results suggest the potential for hygiene measures to mitigate negative aspects of contact between humans and macaques in order to optimize the health of both populations.


2021 ◽  
Vol 11 ◽  
Author(s):  
Shuangyu Lv ◽  
Xiaomei Zhang ◽  
Yu Feng ◽  
Qiying Jiang ◽  
Chenguang Niu ◽  
...  

Βeta-cyclodextrin (β-CD) with a hydrophobic cavity enables the formation of inclusion complexes with organic molecules. The formation of host–guest complexes makes the application of β-CD popular in many fields, but their interaction with organisms is poorly understood. In the present study, the effect of β-CD on gut microbiota (16S rRNA gene sequencing), serum metabolites (gas chromatography–mass spectrometry platform), and their correlation (Pearson correlation analysis) was investigated after 14 days repeated oral exposure in mice. β-CD did not significantly affect the α-diversity indexes, including Richness, Chao1, Shannon and Simpson indexes, but disturbed the structure of the gut bacteria according to the result of principal component analysis (PCA). After taxonomic assignment, 1 in 27 phyla, 2 in 48 classes, 3 in 107 orders, 6 in 192 families, and 8 in 332 genera were significantly different between control and β-CD treated groups. The serum metabolites were significantly changed after β-CD treatment according to the result of unsupervized PCA and supervised partial least squares-discriminant analysis (PLS-DA). A total of 112 differential metabolites (89 downregulated and 23 upregulated) were identified based on the VIP >1 from orthogonal PLS-DA and p <0.05 from Student’s t-test. The metabolic pathways, including ABC transporters, pyrimidine metabolism, purine metabolism, glucagon signaling pathway, insulin signaling pathway, and glycolysis/gluconeogenesis, were enriched by KEGG pathway analysis. Our study provides a general observation of gut microbiota, serum metabolites and their correlation after exposure to β-CD in mice, which will be helpful for future research and application of β-CD.


Sign in / Sign up

Export Citation Format

Share Document