scholarly journals DAB2IP predicts treatment response and prognosis of ESCC patients and modulates its radiosensitivity through enhancing IR-induced activation of the ASK1-JNK pathway

2020 ◽  
Author(s):  
Yue Li ◽  
Meng Xu ◽  
Weiyang Fang ◽  
Lei Sheng ◽  
Xiangcun Chen ◽  
...  

Abstract BACKGROUND: Disabled homolog 2 interacting protein (DAB2IP) plays a tumor-suppressive role in several types of human cancers. However, the molecular status and function of the DAB2IP gene in esophageal squamous cell carcinoma (ESCC) is rarely reported. METHODS: We examined the expression dynamics of DAB2IP by immunohistochemistry (IHC) in 140 ESCC patients treated with definite chemoradiotherapy. A series of in vivo and in vitro experiments were performed to elucidate the effect of DAB2IP on the chemoradiotherapy (CRT) response and its underlying mechanisms in ESCC.RESULTS: Decreased expression of DAB2IP in ESCCs correlated positively with ESCC resistance to CRT and was a strong and independent predictor for short disease-specific survival (DSS) of ESCC patients. Furthermore, the therapeutic sensitivity of CRT was substantially increased by ectopic overexpression of DAB2IP in ESCC cells. In addition, knockdown of DAB2IP dramatically enhanced resistance to CRT in ESCC. Finally, we demonstrated that DAB2IP regulates ESCC cell radiosensitivity through enhancing ionizing radiation (IR)-induced activation of the ASK1-JNK signaling pathway.CONCLUSIONS: Our data highlight the molecular etiology and clinical significance of DAB2IP in ESCC, which may represent a new therapeutic strategy to improve therapy and survival for ESCC patients.

2020 ◽  
Author(s):  
Yue Li ◽  
Meng Xu ◽  
Weiyang Fang ◽  
Xiangcun Chen ◽  
Jifei Xu ◽  
...  

Abstract Background: Disabled homolog 2 interacting protein (DAB2IP) plays a tumor-suppressive role in several types of human cancers. However, the molecular status and function of the DAB2IP gene in esophageal squamous cell carcinoma (ESCC) is rarely reported. Methods: We examined the expression dynamics of DAB2IP by immunohistochemistry (IHC) in 140 ESCC patients treated with definite chemoradiotherapy. A series of in vivo and in vitro experiments were performed to elucidate the effect of DAB2IP on the chemoradiotherapy (CRT) response and its underlying mechanisms in ESCC. Results: Decreased expression of DAB2IP in ESCCs correlated positively with ESCC resistance to CRT and was a strong and independent predictor for short disease-specific survival (DSS) of ESCC patients. Furthermore, the therapeutic sensitivity of CRT was substantially increased by ectopic overexpression of DAB2IP in ESCC cells. In addition, knockdown of DAB2IP dramatically enhanced resistance to CRT in ESCC. Finally, we demonstrated that DAB2IP regulates ESCC cell radiosensitivity through enhancing ionizing radiation (IR)-induced activation of the ASK1-JNK signaling pathway. Conclusions: Our data highlight the molecular etiology and clinical significance of DAB2IP in ESCC, which may represent a new therapeutic strategy to improve therapy and survival for ESCC patients. Keywords: Esophageal squamous cell carcinoma; DAB2IP; chemoradiosensitivity; ASK1; JNK


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Xin She ◽  
Qing Yang Yu ◽  
Xiao Xiao Tang

AbstractInterleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Show-Li Chen

Previously, we demonstrate a gene, nuclear receptor interaction protein (NRIP, also named DCAF6 or IQWD1) as a Ca2+- dependent calmodulin binding protein that can activate calcineurin phosphatase activity. Here, we found that α-actinin-2 (ACTN2), is one of NRIP-interacting proteins from the yeast two-hybrid system using NRIP as a prey. We further confirmed the direct bound between NRIP and ACTN2 using in vitro protein-protein interaction and in vivo co-immunoprecipitation assays. To further map the binding domain of each protein, the results showed the IQ domain of NRIP responsible for ACTN2 binding, and EF hand motif of ACTN2 responsible for NRIP bound. Due to ACTN2 is a biomarker of muscular Z-disc complex; we found the co-localization of NRIP and ACTN2 in cardiac tissues by immunofluorescence assays. Taken together, NRIP is a novel ACTN2-interacting protein. To investigate insights into in vivo function of NRIP, we generated conventional NRIP-null mice. The H&E staining results are shown in the hearts of NRIP KO mice are enlarged and dilated and the cell width of NRIP KO cardiomyocyte is increased. The EM of NRIP KO heart muscles reveal the reduction of I-band width and extension length of Z-disc in sarcomere structure; and the echocardiography shows the diminished fractional shortening in heart functions. Additionally, the calcium transient and sarcomere contraction length in cardiomyocytes of NRIP KO is weaker and shorter than wt; respectively. In conclusion, NRIP is a novel Z-disc protein and has function for maintenance of sarcomere integrity structure and function for calcium transient and muscle contraction.


2017 ◽  
Vol 2017 ◽  
pp. 1-27 ◽  
Author(s):  
Taiwo Olayemi Elufioye ◽  
Tomayo Ireti Berida ◽  
Solomon Habtemariam

Neuroprotection is the preservation of the structure and function of neurons from insults arising from cellular injuries induced by a variety of agents or neurodegenerative diseases (NDs). The various NDs including Alzheimer’s, Parkinson’s, and Huntington’s diseases as well as amyotropic lateral sclerosis affect millions of people around the world with the main risk factor being advancing age. Each of these diseases affects specific neurons and/or regions in the brain and involves characteristic pathological and molecular features. Hence, several in vitro and in vivo study models specific to each disease have been employed to study NDs with the aim of understanding their underlying mechanisms and identifying new therapeutic strategies. Of the most prevalent drug development efforts employed in the past few decades, mechanisms implicated in the accumulation of protein-based deposits, oxidative stress, neuroinflammation, and certain neurotransmitter deficits such as acetylcholine and dopamine have been scrutinized in great detail. In this review, we presented classical examples of plant-derived neuroprotective agents by highlighting their structural class and specific mechanisms of action. Many of these natural products that have shown therapeutic efficacies appear to be working through the above-mentioned key multiple mechanisms of action.


2020 ◽  
Author(s):  
Sisi Wei ◽  
Shiping Sun ◽  
Xinliang Zhou ◽  
Cong Zhang ◽  
Xiaoya Li ◽  
...  

Abstract A substantial fraction of transcripts are known as long noncoding RNAs (lncRNAs), and these transcripts play pivotal roles in the development of cancer. However, little information has been published regarding the functions of lncRNAs in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanisms. In our previous studies, we demonstrated that small nucleolar RNA host gene 5 (SNHG5), a known lncRNA, is dysregulated in gastric cancer (GC). In this study, we explored the expression and function of SNHG5 in development of ESCC. SNHG5 was found to be downregulated in human ESCC tissues and cell lines, and this downregulation was associated with cancer progression, clinical outcomes and survival rates of ESCC patients. Furthermore, we also found that overexpression of SNHG5 significantly inhibited the proliferation, migration and invasion of ESCC cells in vivo and in vitro. Notably, we found that metastasis-associated protein 2 (MTA2) was pulled down by SNHG5 in ESCC cells using RNA pulldown assay. We also found that SNHG5 reversed the epithelial–mesenchymal transition by interacting with MTA2. In addition, overexpression of SNHG5 downregulated the transcription of MTA2 and caused its ubiquitin-mediated degradation. Thus, overexpression of MTA2 partially abrogated the effect of SNHG5 in ESCC cell lines. Furthermore, we found that MTA2 mRNA expression was significantly elevated in ESCC specimens, and a negative correlation between SNHG5 and MTA2 expression was detected. Overall, this study demonstrated, for the first time, that SNHG5-regulated MTA2 functions as an important player in the progression of ESCC and provide a new potential therapeutic strategy for ESCC.


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1128 ◽  
Author(s):  
Pedro de Medeiros ◽  
Daniel Pinto ◽  
Juliana de Almeida ◽  
Juliana Rêgo ◽  
Francisco Rodrigues ◽  
...  

The micronutrient vitamin A refers to a group of compounds with pleiotropic effects on human health. These molecules can modulate biological functions, including development, vision, and regulation of the intestinal barrier. The consequences of vitamin A deficiency and supplementation in children from developing countries have been explored for several years. These children live in an environment that is highly contaminated by enteropathogens, which can, in turn, influence vitamin A status. Vitamin A has been described to modulate gene expression, differentiation and function of diverse immune cells; however, the underlying mechanisms are not fully elucidated. This review aims to summarize the most updated advances on elucidating the vitamin A effects targeting intestinal immune and barrier functions, which may help in further understanding the burdens of malnutrition and enteric infections in children. Specifically, by covering both clinical and in vivo/in vitro data, we describe the effects of vitamin A related to gut immune tolerance/homeostasis, intestinal barrier integrity, and responses to enteropathogens in the context of the environmental enteric dysfunction. Some of the gaps in the literature that require further research are also highlighted.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiuqing Huang ◽  
Guang Yang ◽  
Li Zhao ◽  
Huiping Yuan ◽  
Hao Chen ◽  
...  

Lipotoxicity-induced apoptosis, also referred to as lipoapoptosis, is one of the important initial factors promoting the progression from hepatosteatosis to nonalcoholic steatohepatitis (NASH). Saturated free fatty acids (SFAs), which are increased significantly in NASH, are directly hepatotoxic which induce hepatocyte lipoapoptosis. Previously, we reported that protein phosphatase 4 (PP4) was a novel regulator of hepatic insulin resistance and lipid metabolism, but its role in hepatic lipoapoptosis remains unexplored. In this study, we found out that PP4 was upregulated in the livers of western diet-fed-induced NASH mice and SFA-treated murine primary hepatocytes and HepG2 cells. In addition, we found for the first time that suppression of PP4 decreased SFA-induced JNK activation and expression of key modulators of hepatocyte lipoapoptosis including p53-upregulated modulator of apoptosis (PUMA) and Bcl-2-interacting mediator (Bim) and reduced hepatocyte lipoapoptosis level as well both in vitro and in vivo. Further study revealed that PP4 induced JNK activation and lipoapoptosis-related protein expression by regulating the RAC1/MLK3 pathway instead of the PERK/CHOP pathway. The effects of palmitate-treated and PP4-induced lipoapoptosis pathway activation were largely abolished by RAC1 inhibition. Moreover, we identified that PP4 interacted with RAC1 and regulated GTPase activity of RAC1. In conclusion, these results demonstrated that PP4 was a novel regulator of hepatocyte lipoapoptosis and mediated hepatocyte lipoapoptosis by regulating the RAC1/MLK3/JNK signaling pathway. Our finding provided new insights into the mechanisms of this process.


Author(s):  
Mei Yu Shen ◽  
Bao Ping Jiang ◽  
Ming Fei Zhang ◽  
Xiang Wang ◽  
Hong Zhu ◽  
...  

Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease with the decreasing proportion of regulatory T (Treg) cells. Previous studies have shown that microRNAs (miRNAs, miR) act as key regulators of Treg cells. In this study, we assessed the involvement of miR-143-3p on Treg cells differentiation and function in the RA progress. We reported that the expression of miR-143-3p has been negatively associated with RA disease activity, and actively correlated with anti-inflammatory cytokine IL-10, which was secreted by Treg cells. In vitro, miR-143-3p expression in the CD4+T cells contributed to the upregulation of forkhead box protein 3 (Foxp3), which was the characteristic transcription factor of Treg cells. Notably, miR-143-3p mimics treatment markedly upregulated the frequency of Treg cells in vivo, effectively prevented CIA development and significantly inhibited inflammation in mice. Altogether, we proposed that MiR-143-3p can alleviate CIA by polarizing naive CD4+T cells into Treg cells, which warrants miR-143-3p as a target for the new therapeutic strategy of Treg-deficiency autoimmune diseases such as RA.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document