scholarly journals Characterization and Anticancer Effects of Folate Targeted Inotodiol Liposome From Inonotus Obliquus (Chaga Mushroom)

Author(s):  
Yangpeng Lu ◽  
Xudong Gao ◽  
Zhongqin Chen ◽  
Zihan Xue ◽  
Yanan Jia ◽  
...  

Abstract Inotodiol, one tetracyclic triterpenoid isolated from inonotus obliquus (Chaga mushroom) possess excellent anticancer, antioxidant and anti-inflammatory activities, however it has not been applied to medical use due to its low solubility and low bioavailability. Liposome as a good nanodrug carrier with EPR and good biocompatibility has received much research attention. To improve the solubility and bioavailability of IOP, we prepared inotodiol liposomes (IOP-Lps) and folic-acid targeting IOP liposome (FA-IOP-Lps) by ultrasonic method, and their particle size, morphology, zeta potential, entrapment efficiency (EE) and drug loading rate (DL) were characterized by DLS, TEM, FT-IR and HPLC respectively. Their in vitro cytotoxicity of human cervical cancer cells HeLa, human liver cancer cells HepG2 and human breast cancer cells MCF-7 were assessed using the MTT assay. The results showed that IOP-Lps and FA-IOP-Lps possess significant anticancer effects. The results of TEM, FT-IR and DLS confirmed the formation of liposome. The particle size of IOP-Lps were 201.07±6.47 nm and ζ-potential of -50.2±0.5 mV, FA-IOP-Lps 224.33±1.86 nm and ζ-potential of -51.2±0.3 mV, the EE of IOP-Lps and FA-IOP-Lps were 79.14% and 77.33%, respectively. IOP-Lps and FA-IOP-Lps could selectively kill HeLa, HepG2 and MCF-7 cancer cells while nontoxic to normal L02 cells. This is the first study to give out in vitro information of inotodiol’ s anticancer effects based on nanocarriers. Besides, this drug delivery system is of good sustained release and targeted delivery effects to promote the utilization of both inotodiol and other natural hydrophobic compounds in target treatment of cancers.

2020 ◽  
Vol 21 (14) ◽  
pp. 1528-1538
Author(s):  
Sarah Albogami ◽  
Hadeer Darwish ◽  
Hala M. Abdelmigid ◽  
Saqer Alotaibi ◽  
Ahmed Nour El-Deen ◽  
...  

Background: In Saudi Arabia, the incidence and mortality rates of breast cancer are high. Although current treatments are effective, breast cancer cells develop resistance to these treatments. Numerous studies have demonstrated that active compounds in plant extracts, such as the phenolic compound Rosmarinic Acid (RA), exert anti-cancer effects. Objective: We investigated the anticancer properties of methanolic crude extracts of seedlings and calli of Rosmarinus officinalis and Coleus hybridus, two Lamiaceae species. Methods: MCF-7 human breast cancer cells were treated with methanolic crude extracts obtained from plant calli and seedlings generated in vitro, and cell proliferation was evaluated. Transcriptional profiling of the seedling and callus tissues was also conducted. Results: The mRNA expression levels of RA genes were higher in C. hybridus seedlings than in R. officinalis seedlings, as well as in C. hybridus calli than in R. officinalis calli, except for TAT and C4H. In addition, seedling and callus extracts of both R. officinalis and C. hybridus showed anti-proliferative effects against MCF-7 cells after 24 or 48 h of treatment. Discussion: At a low concentration of 10 μg/mL, C. hybridus calli and seedling extracts showed the most significant anti-proliferative effects after 24 and 48 h of exposure (p < 0.01); controls (doxorubicin) also showed significant inhibition, but lesser than that observed with C. hybridus (p < 0.05). Results with R. officinalis callus and seedling extracts did not significantly differ from those with untreated cells. Conclusion: Methanolic extracts of R. officinalis and C. hybridus are potentially valuable options for breast cancer treatment.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2020 ◽  
Vol 10 (5) ◽  
pp. 577-590
Author(s):  
Jai B. Sharma ◽  
Shailendra Bhatt ◽  
Asmita Sharma ◽  
Manish Kumar

Background: The potential use of nanocarriers is being explored rapidly for the targeted delivery of anticancer agents. Curcumin is a natural polyphenolic compound obtained from rhizomes of turmeric, belongs to family Zingiberaceae. It possesses chemopreventive and chemotherapeutic activity with low toxicity in almost all types of cancer. The low solubility and bioavailability of curcumin make it unable to use for the clinical purpose. The necessity of an effective strategy to overcome the limitations of curcumin is responsible for the development of its nanocarriers. Objective: This study is aimed to review the role of curcumin nanocarriers for the treatment of cancer with special emphasis on cellular uptake and in vitro cytotoxicity studies. In addition to this, the effect of various ligand conjugated curcumin nanoparticles on different types of cancer was also studied. Methods: A systematic review was conducted by extensively surfing the PubMed, science direct and other portals to get the latest update on recent development in nanocarriers of curcumin. Results: The current data from recent studies showed that nanocarriers of curcumin resulted in the targeted delivery, higher efficacy, enhanced bioavailability and lower toxicity. The curcumin nanoparticles showed significant inhibitory effects on cancer cells as compared to free curcumin. Conclusion: It can be concluded that bioavailability of curcumin and its cytotoxic effect to cancer cells can be enhanced by the development of curcumin based nanocarriers and it was found to be a potential drug delivery technique for the treatment of cancer.


2021 ◽  
pp. 096032712199945
Author(s):  
AT Aliyev ◽  
S Ozcan-Sezer ◽  
A Akdemir ◽  
H Gurer-Orhan

Apigenin, a flavonoid, is reported to act as an estrogen receptor (ER) agonist and inhibit aromatase enzyme. However, amentoflavone, a biflavonoid bearing two apigenin molecules, has not been evaluated for its endocrine modulatory effects. Besides, it is highly consumed by young people to build muscles, enhance mood and lose weight. In the present study, apigenin was used as a reference molecule and ER mediated as well as ER-independent estrogenic/antiestrogenic activity of amentoflavone was investigated. Antitumor activity of amentoflavone was also investigated in both ER positive (MCF-7 BUS) and triple-negative (MDA-MB-231) breast cancer cells and its cytotoxicity was evaluated in human breast epithelial cells (MCF-10A). Our data confirmed ER agonist, aromatase inhibitory and cytotoxic effects of apigenin in breast cancer cells, where no ER mediated estrogenic effect and physiologically irrelevant, slight, aromatase inhibition was found for amentoflavone. Although selective cytotoxicity of amentoflavone was found in MCF-7 BUS cells, it does not seem to be an alternative to the present cytotoxic drugs. Therefore, neither an adverse effect, mediated by an estrogenic/antiestrogenic effect of amentoflavone nor a therapeutical benefit would be expected from amentoflavone. Further studies could be performed to investigate its in vivo effects.


2021 ◽  
Vol 12 (1) ◽  
pp. 8-15
Author(s):  
Ainaz Mihanfar ◽  
Niloufar Targhazeh ◽  
Shirin Sadighparvar ◽  
Saber Ghazizadeh Darband ◽  
Maryam Majidinia ◽  
...  

Abstract Doxorubicin (DOX) is an effective chemotherapeutic agent used for the treatment of various types of cancer. However, its poor solubility, undesirable side effects, and short half-life have remained a challenge. We used a formulation based on graphene oxide as an anticancer drug delivery system for DOX in MCF-7 breast cancer cells, to address these issues. In vitro release studies confirmed that the synthesized formulation has an improved release profile in acidic conditions (similar to the tumor microenvironment). Further in vitro studies, including MTT, uptake, and apoptosis assays were performed. The toxic effects of the nanocarrier on the kidney, heart and liver of healthy rats were also evaluated. We observed that the DOX-loaded carrier improved the cytotoxic effect of DOX on the breast cell line compared to free DOX. In summary, our results introduce the DOX-loaded carrier as a potential platform for in vitro targeting of cancer cells and suggest further studies are necessary to investigate its in vivo anti-cancer potential.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Sultan Alshehri ◽  
Syed Sarim Imam ◽  
Md Rizwanullah ◽  
Khalid Umar Fakhri ◽  
Mohd Moshahid Alam Rizvi ◽  
...  

In the present study, thymoquinone (TQ)-encapsulated chitosan- (CS)-coated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were formulated using the emulsion evaporation method. NPs were optimized by using 33-QbD approach for improved efficacy against breast cancer. The optimized thymoquinone loaded chitosan coated Poly (d,l-lactide-co-glycolide) nanoparticles (TQ-CS-PLGA-NPs) were successfully characterized by different in vitro and ex vivo experiments as well as evaluated for cytotoxicity in MDA-MB-231 and MCF-7 cell lines. The surface coating of PLGA-NPs was completed by CS coating and there were no significant changes in particle size and entrapment efficiency (EE) observed. The developed TQ-CS-PLGA-NPs showed particle size, polydispersibility index (PDI), and %EE in the range between 126.03–196.71 nm, 0.118–0.205, and 62.75%–92.17%. The high and prolonged TQ release rate was achieved from TQ-PLGA-NPs and TQ-CS-PLGA-NPs. The optimized TQ-CS-PLGA-NPs showed significantly higher mucoadhesion and intestinal permeation compared to uncoated TQ-PLGA-NPs and TQ suspension. Furthermore, TQ-CS-PLGA-NPs showed statistically enhanced antioxidant potential and cytotoxicity against MDA-MB-231 and MCF-7 cells compared to uncoated TQ-PLGA-NPs and pure TQ. On the basis of the above findings, it may be stated that chitosan-coated TQ-PLGA-NPs represent a great potential for breast cancer management.


2011 ◽  
Vol 83 (11) ◽  
pp. 2027-2040 ◽  
Author(s):  
Neralakere Ramanna Ravikumara ◽  
Basavaraj Madhusudhan

In this study, tamoxifen citrate-loaded chitosan nanoparticles (tamoxcL-ChtNPs) and tamoxifen citrate-free chitosan nanoparticles (tamoxcF-ChtNPs) were prepared by an ionic gelation (IG) method. The physicochemical properties of the nanoparticles were analyzed for particle size, zeta (ζ) potential, and other characteristics using photon correlation spectroscopy (PCS), zeta phase analysis light scattering (PALS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and differential scanning calorimetry (DSC). The variation in particle size was assessed by changing the concentration of chitosan, pentasodium tripolyphosphate (TPP), and the pH of the solution. The optimized tamoxcL-ChtNPs showed mean diameter of 187 nm, polydispersity of 0.125, and ζ-potential of +19.1 mV. The encapsulation efficiency (EE) of tamoxifen citrate (tamoxc) increased at higher concentrations, and release of tamoxc from the chitosan matrix displayed controlled biphasic behavior. Those tamoxcL-ChtNPs tested for chemosensitivity showed dose- and time-dependent antiproliferative activity of tamoxc. Further, tamoxcL-ChtNPs were found to be hemocompatible with human red blood cells (RBCs) and safe by in vitro cytotoxicity tests, suggesting that they offer promise as drug delivery systems in therapy.


2004 ◽  
Vol 32 (3) ◽  
pp. 793-810 ◽  
Author(s):  
MA Greeve ◽  
RK Allan ◽  
JM Harvey ◽  
JM Bentel

Androgens inhibit the growth of breast cancer cells in vitro and in vivo by mechanisms that remain poorly defined. In this study, treatment of asynchronously growing MCF-7 breast cancer cells with the androgen, 5alpha-dihydrotestosterone (DHT), was shown to inhibit cell proliferation and induce moderate increases in the proportion of G1 phase cells. Consistent with targeting the G1-S phase transition, DHT pretreatment of MCF-7 cultures impeded the serum-induced progression of G1-arrested cells into S phase and reduced the kinase activities of cyclin-dependent kinase (Cdk)4 and Cdk2 to less than 50% of controls within 3 days. DHT treatment was associated with greater than twofold increases in the levels of the Cdk inhibitor, p27(Kip1), while p21(Cip1/Waf1) protein levels remained unchanged. During the first 24 h of DHT treatment, levels of Cdk4-associated p21(Cip1/Waf1) and p27(Kip1) were reduced coinciding with decreased levels of Cdk4-associated cyclin D3. In contrast, DHT treatment caused increased accumulation of Cdk2-associated p21(Cip1/Waf1), with no significant alterations in levels of p27(Kip1) bound to Cdk2 complexes. These findings suggest that DHT reverses the Cdk4-mediated titration of p21(Cip1/Waf1) and p27(Kip1) away from Cdk2 complexes, and that the increased association of p21(Cip1/Waf1) with Cdk2 complexes in part mediates the androgen-induced growth inhibition of breast cancer cells.


2017 ◽  
Vol 7 (8) ◽  
pp. 549-555 ◽  
Author(s):  
Huzaifa Hanif ◽  
Samina Nazir ◽  
Kehkashan Mazhar ◽  
Muhammad Waseem ◽  
Shazia Bano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document