scholarly journals Loss of CLDN5 in podocytes deregulates WIF1 to activate WNT signaling and contributes to kidney disease

Author(s):  
Jie Yan ◽  
Hui Li ◽  
Hui Sun ◽  
Haotian Guo ◽  
Jieying Liu ◽  
...  

Abstract Although mature podocytes lack tight junctions (TJs) and form slit diaphragms between opposing foot processes, TJ integral membrane protein CLDN5 is predominantly expressed throughout the plasma membrane of podocytes under normal conditions. Here using podocyte specific Cldn5 knockout mice as a model, we identify CLDN5 as a crucial regulator of podocyte function and reveal Cldn5 deletion exacerbates podocyte injury and proteinuria in diabetic nephropathy (DN) mouse model. Mechanistically, CLDN5 absence reduces ZO1 expression and induces the nuclear translocation of ZONAB, followed by transcriptional downregulation of WIF1, which leads to activation of WNT signaling pathway. Knockout Wif1 in podocytes result in the development of proteinuria and typical glomerular ultrastructure change occurring in Cldn5 knockout mice, while targeted delivery of Wif1 to podocytes prevents the development of glomerular nephropathy in Cldn5 knockout diabetic mice. Podocyte-derived WIF1 also plays a paracrine role on tubular epithelial cells, evidenced by animals with podocyte deletion of Cldn5 or Wif1 have worse kidney fibrosis after unilateral ureteral obstruction when compared with littermate controls with intact podocyte WIF1 expression. These findings establish a novel function of podocyte CLDN5 in restricting WNT activity in the kidney.

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1146 ◽  
Author(s):  
Zhen-Nan Ye ◽  
Feng Yuan ◽  
Jie-Qing Liu ◽  
Xing-Rong Peng ◽  
Tao An ◽  
...  

Deregulation of the Wnt signaling pathway leads to colorectal cancer progression. Natural dietary compounds serve as promising candidates for development as chemopreventive agents by suppressing the Wnt/β-catenin signaling pathway. Physalis peruviana-derived 4βHWE showed a significant inhibitory activity with a calculated IC50 of 0.09 μΜ in a screening of novel inhibitors of Wnt signaling with the dual-luciferase reporter assay. This study investigated the anti-tumor effect of 4βHWE and the potential Wnt signaling inhibitory mechanism. Both the western blot analysis and immunofluorescence assay showed that 4βHWE promoted the phosphorylation and degradation of β-catenin and the subsequent inhibition of its nuclear translocation to attenuate the endogenous Wnt target gene expression in colorectal cancer (CRC) cells. The cell viability assay indicated that 4βHWE preferentially inhibited the proliferation of CRC compared with CCD-841-CoN, a normal human colonic epithelial cell line. 4βHWE-mediated G0/G1 cell cycle arrest and apoptosis induction contributed to the suppression of the proliferation of CRC in the cell cycle and Annexin V-FITC/Propidium Iodide apoptosis analysis. Moreover, in vivo, 4βHWE dramatically inhibited tumor growth in HCT116 xenografts by attenuating the Wnt/β-catenin signaling pathway. In conclusion, our study suggested that 4βHWE could be of potential use in anti-tumor agent development as a novel Wnt signaling inhibitor.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Wenhao Cui ◽  
Xiaoli He ◽  
Xiaohong Zhai ◽  
Huan Zhang ◽  
Yuanwei Zhang ◽  
...  

AbstractCollaborator of ARF (CARF) regulates cell proliferative fate through both p53-dependent and -independent mechanisms. Recently, we reported a new function of CARF as a positive regulator of Wnt signaling. Despite these findings, the physiological function of CARF has not been well studied. Here, we generated CARF knockout mice and found that male CARF−/− mice exhibited significantly impaired fertility and Sertoli-cell-only (SCO) syndrome phenotypes. Further studies revealed that loss of CARF in Sertoli cells led to decreased GDNF expression, which hindered spermatogonial stem cells (SSCs) self-renewal. Meanwhile, CARF loss in undifferentiated spermatogonia impaired their proliferation. These two mechanisms together led to SCO syndrome phenotypes, which could be functionally rescued by pharmacological or genetic reactivation of Wnt signaling. Finally, we identified CARFS351F as a potential pathogenic mutation in an SCO patient. Overall, our findings reveal important roles of CARF in spermatogonial self-renewal and proliferation through the Wnt signaling pathway.


2012 ◽  
Vol 48 (2) ◽  
pp. 177-191 ◽  
Author(s):  
Kathryn L Auld ◽  
Stephen P Berasi ◽  
Yan Liu ◽  
Michael Cain ◽  
Ying Zhang ◽  
...  

Based on its homology to the estrogen receptor and its roles in osteoblast and chondrocyte differentiation, the orphan nuclear receptor estrogen-related receptor α (ERRα (ESRRA)) is an intriguing therapeutic target for osteoporosis and other bone diseases. The objective of this study was to better characterize the molecular mechanisms by which ERRα modulates osteoblastogenesis. Experiments from multiple systems demonstrated that ERRα modulates Wnt signaling, a crucial pathway for proper regulation of bone development. This was validated using a Wnt-luciferase reporter, where ERRα showed co-activator-dependent (peroxisome proliferator-activated receptor gamma co-activator 1α, PGC-1α) stimulatory effects. Interestingly, knockdown of ERRα expression also enhanced WNT signaling. In combination, these data indicated that ERRα could serve to either activate or repress Wnt signaling depending on the presence or absence of its co-activator PGC-1α. The observed Wnt pathway modulation was cell intrinsic and did not alter β-catenin nuclear translocation but was dependent on DNA binding of ERRα. We also found that expression of active ERRα correlated with Wnt pathway effects on osteoblastic differentiation in two cell types, consistent with a role for ERRα in modulating the Wnt pathway. In conclusion, this work identifies ERRα, in conjunction with co-activators such as PGC-1α, as a new regulator of the Wnt-signaling pathway during osteoblast differentiation, through a cell-intrinsic mechanism not affecting β-catenin nuclear translocation.


2017 ◽  
Author(s):  
Eric T. Hall ◽  
Elizabeth Hoesing ◽  
Endre Sinkovics ◽  
Esther M. Verheyen

AbstractMechanical forces can influence the canonical Wnt signaling pathway in processes like mesoderm differentiation and tissue stiffness during tumorigenesis, but a molecular mechanism involving both in a developing epithelium and its homeostasis is lacking. We identified that increased non-muscle myosin II activation and cellular contraction inhibited Wnt target gene transcription in developing Drosophila. Genetic interactions studies identified this effect was due to myosin-induced accumulation of cortical F-actin resulting in clustering and accumulation of E-cadherin to the adherens junctions. E-cadherin titrates any available β-catenin, the Wnt pathway transcriptional co-activator, to the adherens junctions in order to maintain cell-cell adhesion under contraction. We show that decreased levels of cytoplasmic β-catenin result in insufficient nuclear translocation for full Wnt target gene transcription. Our work elucidates a mechanism in which the dynamic activation of actomyosin contractility refines patterning of Wnt transcription during development and maintenance of epithelial tissue in organisms.


2019 ◽  
Vol 30 (3) ◽  
pp. 411-426 ◽  
Author(s):  
Eric T. Hall ◽  
Elizabeth Hoesing ◽  
Endre Sinkovics ◽  
Esther M. Verheyen

Actomyosin contractility can influence the canonical Wnt signaling pathway in processes like mesoderm differentiation and tissue stiffness during tumorigenesis. We identified that increased nonmuscle myosin II activation and cellular contraction inhibited Wnt target gene transcription in developing Drosophila imaginal disks. Genetic interactions studies were used to show that this effect was due to myosin-induced accumulation of cortical F-actin resulting in clustering and accumulation of E-cadherin to the adherens junctions. This results in E-cadherin titrating any available β-catenin, the Wnt pathway transcriptional coactivator, to the adherens junctions in order to maintain cell–cell adhesion under contraction. We show that decreased levels of cytoplasmic β-catenin result in insufficient nuclear translocation for full Wnt target gene transcription. Previous studies have identified some of these interactions, but we present a thorough analysis using the wing disk epithelium to show the consequences of modulating myosin phosphatase. Our work elucidates a mechanism in which the dynamic promotion of actomyosin contractility refines patterning of Wnt transcription during development and maintenance of epithelial tissue in organisms.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1633
Author(s):  
Anja Bukovac ◽  
Anja Kafka ◽  
Marina Raguž ◽  
Petar Brlek ◽  
Katarina Dragičević ◽  
...  

Epithelial to mesenchymal transition (EMT), which is characterized by the reduced expression of E-cadherin and increased expression of N-cadherin, plays an important role in the tumor invasion and metastasis. Classical Wnt signaling pathway has a tight link with EMT and it has been shown that nuclear translocation of β-catenin can induce EMT. This research has showed that genes that are involved in cadherin switch, CDH1 and CDH2, play a role in meningioma progression. Increased N-cadherin expression in relation to E-cadherin was recorded. In meningioma, transcription factors SNAIL, SLUG, and TWIST1 demonstrated strong expression in relation to E- and N-cadherin. The expression of SNAIL and SLUG was significantly associated with higher grades (p = 0.001), indicating their role in meningioma progression. Higher grades also recorded an increased expression of total β-catenin followed by an increased expression of its active form (p = 0.000). This research brings the results of genetic and protein analyzes of important molecules that are involved in Wnt and EMT signaling pathways and reveals their role in intracranial meningioma. The results of this study offer guidelines and new markers of progression for future research and reveal new molecular targets of therapeutic interventions.


2010 ◽  
Vol 298 (6) ◽  
pp. C1510-C1516 ◽  
Author(s):  
Jiyun Ahn ◽  
Hyunjung Lee ◽  
Suna Kim ◽  
Taeyoul Ha

Curcumin, a polyphenol found in the rhizomes of Curcuma longa , improves obesity-associated inflammation and diabetes in obese mice. Curcumin also suppresses adipocyte differentiation, although the underlying mechanism remains unclear. Here, we used 3T3-L1 cells to investigate the details of the mechanism underlying the anti-adipogenic effects of curcumin. Curcumin inhibited mitogen-activated protein kinase (MAPK) (ERK, JNK, and p38) phosphorylation that was associated with differentiation of 3T3-L1 cells into adipocytes. During differentiation, curcumin also restored nuclear translocation of the integral Wnt signaling component β-catenin in a dose-dependent manner. In parallel, curcumin reduced differentiation-stimulated expression of CK1α, GSK-3β, and Axin, components of the destruction complex targeting β-catenin. Accordingly, quantitative PCR analysis revealed that curcumin inhibited the mRNA expression of AP2 (mature adipocyte marker) and increased the mRNA expression of Wnt10b, Fz2 (Wnt direct receptor), and LRP5 (Wnt coreceptor). Curcumin also increased mRNA levels of c-Myc and cyclin D1, well-known Wnt targets. These results suggest that the Wnt signaling pathway participates in curcumin-induced suppression of adipogenesis in 3T3-L1 cells.


Author(s):  
Haiying Wang ◽  
Ran Zhang ◽  
Xinjie Wu ◽  
Yafen Chen ◽  
Wei Ji ◽  
...  

Diabetic nephropathy (DN) is a serious kidney-related complication of both type 1 and type 2 diabetes mellitus (T1DM, T2DM) and the second major cause of end-stage kidney disease. DN can lead to hypertension, edema, and proteinuria. In some cases, DN can even progress to kidney failure, a life-threatening condition. The precise etiology and pathogenesis of DN remain unknown, although multiple factors are believed to be involved. The main pathological manifestations of DN include mesangial expansion, thickening of the glomerular basement membrane, and podocyte injury. Eventually, these pathological manifestations will lead to glomerulosclerosis, thus affecting renal function. There is an urgent need to develop new strategies for the prevention and treatment of DN. Existing evidence shows that the Wnt signaling cascade plays a key role in regulating the development of DN. Previous studies focused on the role of the Wnt canonical signaling pathway in DN. Subsequently, accumulated evidence on the mechanism of the Wnt non-canonical signaling indicated that Wnt/Ca2+ and Wnt/PCP also have essential roles in the progression of DN. In this review, we summarize the specific mechanisms of Wnt signaling in the occurrence and development of DN in podocyte injury, mesangial cell injury, and renal fibrosis. Also, to elucidate the significance of the Wnt canonical pathway in the process of DN, we uncovered evidence supporting that both Wnt/PCP and Wnt/Ca2+ signaling are critical for DN development.


2010 ◽  
Vol 34 (8) ◽  
pp. S41-S41
Author(s):  
Yang Bi ◽  
Yun He ◽  
Tingyu Li ◽  
Tao Feng ◽  
Tongchuan He

2006 ◽  
Vol 175 (4S) ◽  
pp. 136-136
Author(s):  
Ralph Buttyan ◽  
Xuezhen Yang ◽  
Min-Wei Chen ◽  
Debra L. Bemis ◽  
Mitchell C. Benson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document