scholarly journals Extracellular vesicles-transmitted miR-21a-5p altered microglia polarization after hypoxia-ischemic injury in neonatal mice via STAT3 pathways

Author(s):  
Danqing Xin ◽  
Yijing Zhao ◽  
Tingting Li ◽  
Hongfei Ke ◽  
Chengcheng Gai ◽  
...  

Abstract Background We previously reported that mesenchymal stromal cells (MSCs)-derived extracellular vesicles (EVs) exhibit protective effects in hypoxia-ischemia (HI) brain damage. The neuroprotective action was connected with its anti-inflammatory effect. However, the mechanisms involved with this effect have not been determined. Methods A modified version of the Rice-Vannucci method was performed on postnatal day 7 mouse pups to induce neonatal HI brain injury. The model of oxygen-glucose deprivation (OGD) was established in BV-2 cells to mimic HI injury in vitro. Mice or BV-2 cells received EVs and EVs-miR-21ainhibitor at indicative time post-injury. In vivo, brain water content and TTC staining were used to evaluate the effects of EVs on HI brain injury. Immunofluorescence staining was used to observe the effect of EVs on the polarization of microglia. The effect of EVs on p-STAT3 was assessed by Western blot. In vitro, the effect of EVs on cell survival was evaluated by CCK8. Expression of miR-21a-5p and inflammatory factors was measured using qRT-PCR. Dual-Luciferase Reporter Assay was performed to illustrate the link between miR-21a-5p and STAT3. The role of miR-21a-5p in EVs on HI injury and ODG injury was further investigated by using EVs-miR-21ainhibitor.Results By using OGD mimicking HI injury in vitro, we found that MSCs-EVs treatment elevated cell viability following OGD exposure in BV-2 cells. MSCs-EVs treatment impeded microglia-mediated neuroinflammation, shifted microglia toward M2 polarization, and suppressed the phosphorylation of selective signal transducer and activator of transcription 3 (STAT3) in microglia after HI exposure in vitro and in vivo. In light of miR-21a-5p being the most highly expressed miRNA in MSCs-EVs interacting with the STAT3 pathway, further work focused on this pathway. Notably, MSCs-EVs treatment increased HI-reduced miR-21a-5p levels in BV-2 cells. Diminishing miR-21a-5p in MSCs-EVs partially attenuated its effect on microglia polarization and STAT3 phosphorylation following HI exposure in vitro and in vivo. Conclusions Our study suggested that MSCs-EVs attenuated HI brain damage in neonatal mice via shuttling miR-21a-5p, which induced microglia M2 polarization by targeting STAT3.

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1522
Author(s):  
Bin Zeng ◽  
Hailong Wang ◽  
Junyi Luo ◽  
Meiying Xie ◽  
Zhengjiang Zhao ◽  
...  

Secretory immunoglobulin A (SIgA) plays an important role in gut acquired immunity and mucosal homeostasis. Breast milk is the irreplaceable nutritional source for mammals after birth. Current studies have shown the potential functional role of milk-derived small extracellular vesicles (sEVs) and their RNAs cargo in intestinal health and immune regulation. However, there is a lack of studies to demonstrate how milk-derived sEVs affect intestinal immunity in recipient. In this study, through in vivo experiments, we found that porcine milk small extracellular vesicles (PM-sEVs) promoted intestinal SIgA levels, and increased the expression levels of polymeric immunoglobulin receptor (pIgR) both in mice and piglet. We examined the mechanism of how PM-sEVs increased the expression level of pIgR in vitro by using a porcine small intestine epithelial cell line (IPEC-J2). Through bioinformatics analysis, dual-luciferase reporter assays, and overexpression or knockdown of the corresponding non-coding RNAs, we identified circ-XPO4 in PM-sEVs as a crucial circRNA, which leads to the expression of pIgR via the suppression of miR-221-5p in intestinal cells. Importantly, we also observed that oral administration of PM-sEVs increased the level of circ-XPO4 and decreased the level of miR-221-5p in small intestine of piglets, indicating that circRNAs in milk-derived sEVs act as sponge for miRNAs in recipients. This study, for the first time, reveals that PM-sEVs have a capacity to stimulate intestinal SIgA production by delivering circRNAs to receptors and sponging the recipient’s original miRNAs, and also provides valuable data for insight into the role and mechanism of animal milk sEVs in intestinal immunity.


2020 ◽  
Author(s):  
Ye Li ◽  
Xinxin Wang ◽  
Xiaoyu Cao ◽  
Na Li ◽  
Sun Meng ◽  
...  

Abstract Background: Traumatic brain injury (TBI) causes structural damage and impairs motor and cognitive function of the brain. Our previous study suggested that exosomes (EXs) secreted by stem cells from human exfoliated deciduous teeth (SHED) extenuated motor damage in TBI rats by regulating microglia. The molecular mechanism of SHED-EXs was investigated in the present study. Methods: The miRNA array was performed to determine the differential miRNA expression in SHED-EXs treating microglia. The key miRNA was selected. Flow cytometry, immunofluorescence, enzyme linked immunosorbent assay (ELISA) and Griess assay were performed to detect the function of key miRNA. Real-time PCR, Western blotting and dual luciferase reporter assay were used to confirm the relationship between key miRNA and the target gene. Chromatin immunoprecipitation (ChIP) was performed to determine the downstream pathway of EXs-miRNA. Traumatic brain injury rat model was established and local injection of EXs-miRNA was performed to evaluate the effect.Results: SHED-EXs delivery of miR-330-5p was the key in the regulation of microglia polarization by inhibiting M1 polarization and promoting M2 polarization. Mechanistically, miR-330-5p had an inhibitory effect on Ehmt2, and miR-330-5p/Ehmt2 promoted the transcription of CXCL14 through H3K9me2. In vivo data showed that SHED-EXs/miR-330-5p reduced neuro-inflammation and repaired neurological function of TBI rats. Conclusions: SHED-EXs/miR-330-5p improved the motor function of rats after TBI by inhibiting M1 polarization and promoting M2 polarization of microglia through Ehmt2/H3K9me2/CXCL14 pathway.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 616-616
Author(s):  
Fortunato Morabito ◽  
Giovanna Cutrona ◽  
Anna Grazia Recchia ◽  
Marina Fabbi ◽  
Silvano Ferrini ◽  
...  

Abstract Background : CLL displays a considerable degree of clinical heterogeneity, which is in part ascribable to clone-intrinsic biological features and that are also influenced by clone-extrinsic events related to the microenvironment. Among the dynamics-taking place within the CLL microenvironment, those finalized to the induction of an overly inflammatory milieu may significantly impact on the CLL natural history by hijacking the immunological microenvironment at the same time fostering clone fitness. IL-23 acts as a prototypical pro-inflammatory mediator representing a promising therapeutic target. We analyzed the ability of CLL cells to sense IL-23 through the IL-23R complex (consisting of IL12Rß1 and IL23R subunits) expression and correlated this feature with clinical outcome. Moreover, we investigated the synthesis of IL-23 within the CLL microenvironment, and tested the biological effects of the IL-23/IL-23R axis engagement and of its interference in vitro and in vivo. Methods : IL23R complex was detected by quadruple flow cytometry staining with CD19, CD5, IL23R, and IL12Rβ1 in prospectively enrolled CLL cases (O-CLL1 protocol, clinicaltrial.gov identifier NCT00917540). On human tissue specimens, lymph node and bone marrow samples from 16 CLL patients were selected for in situ immunolocalization analyses. NOD/Shi-scid/γcnull (NSG) mice were used for in vivo xenografts, in which activated autologous T cells (AAT), obtained by adding anti-CD3 and CD28 Dynabeads and rIL2 were co-injected with CLL cells. MiRNA analysis was performed by Agilent's Human V2 platform and by quantitative PCR. MirVANA microRNA mimics and inhibitors were purchased from Ambion, Inc. For 3'UTR luciferase reporter experiments, miRNA target reporter vectors were purchased from Origene. Results : By flow cytometry, circulating CLL cells of 281 cases variably expressed IL23R side chain while consistently lacking IL12Rß1 chain expression. The engagement of the uncoupled IL23R complex expression (i.e. IL23R but not IL12Rb1 expression) by IL23 did not activate downstream signaling pathways, such as the up-regulation of pSTAT3. The 3-year TTFT probability of patients with low IL23R expression (IL23R-low) was 91% as compared to 75% of IL23R-high cases [χ2 9.1, P=.003; HR=3.2, 95%CI (1.4-7.1)]; in a multivariate model, IL23R expression still remained independently associated with TTFT. We explored the potential control of IL23R expression in CLL cells by miRNA and found 15 miRNAs inversely associated with IL23R expression, five of which predicted as regulators (miRNA-146b-5p, miRNA-155, miRNA-324-5p, miRNA-532-3p and miRNA-630). Among these, miR-324-3p and miR-146b-5p were demonstrated to functionally regulate the expression of IL23R and IL12Rβ1 proteins in CLL cells, respectively. Within lymphoid tissues, in situ, CLL clones expressing IL23R side chain also showed expression of IL12Rß1, which varied according to the density of CD40L-expressing bystander elements suggesting a microenvironment-driven regulation of the IL-23R complex. To functionally test this hypothesis, CLL cells were co-cultured in the presence of NIH-3T3 transduced with CD40L or with AAT cells. A significant up-regulation was observed for both the IL12Rß1 and IL23R side chains, suggesting the environment co-stimulation as a mechanism of IL-23R complex regulation. Consistently, the IL-23R complex was upmodulated in CLL cells expressing IL-23R but not IL12Rß1, upon xenograft with autologous T cells into NOD-Scid mice. We then investigated the effect of IL-23R engagement by IL-23 in CLL cells and found that IL-23R activity correlated with CLL cell proliferation and survival in vitro via STAT3 phosphorylation. The trophic nature of IL-23-mediated stimuli over CLL cells was further demonstrated in vivo through the adoption of an anti-IL23p19 monoclonal antibody for clinical use, which proved to be effective in eradicating the xenografted CLL clone in the infiltrated tissues (spleen, liver and BM) by inhibiting proliferation and inducing apoptosis. Noteworthy, the therapeutic effect of IL-23 antagonism was demonstrated by histopathology, flow cytometry and BCR clonality. Conclusions : Overall, we demonstrated that IL-23/IL-23R axis is a novel microenvironment-regulated determinant in CLL pathobiology representing a strong prospect in disease prognostication and treatment. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hai-Yan Wu ◽  
Yi-Min Zhou ◽  
Zhu-Qin Liao ◽  
Jia-Wen Zhong ◽  
You-Bin Liu ◽  
...  

AbstractCardiovascular disease is the leading cause of death in the world due to losing regenerative capacity in the adult heart. Frogs possess remarkable capacities to regenerate multiple organs, including spinal cord, tail, and limb, but the response to heart injury and the underlying molecular mechanism remains largely unclear. Here we demonstrated that cardiomyocyte proliferation greatly contributes to heart regeneration in adult X. tropicalis upon apex resection. Using RNA-seq and qPCR, we found that the expression of Fos-like antigen 1 (Fosl1) was dramatically upregulated in early stage of heart injury. To study Fosl1 function in heart regeneration, its expression was modulated in vitro and in vivo. Overexpression of X. tropicalis Fosl1 significantly promoted the proliferation of cardiomyocyte cell line H9c2. Consistently, endogenous Fosl1 knockdown suppressed the proliferation of H9c2 cells and primary cardiomyocytes isolated from neonatal mice. Taking use of a cardiomyocyte-specific dominant-negative approach, we show that blocking Fosl1 function leads to defects in cardiomyocyte proliferation during X. tropicalis heart regeneration. We further show that knockdown of Fosl1 can suppress the capacity of heart regeneration in neonatal mice, but overexpression of Fosl1 can improve the cardiac function in adult mouse upon myocardium infarction. Co-immunoprecipitation, luciferase reporter, and ChIP analysis reveal that Fosl1 interacts with JunB and promotes the expression of Cyclin-T1 (Ccnt1) during heart regeneration. In conclusion, we demonstrated that Fosl1 plays an essential role in cardiomyocyte proliferation and heart regeneration in vertebrates, at least in part, through interaction with JunB, thereby promoting expression of cell cycle regulators including Ccnt1.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Fang Li ◽  
Hongyan Wei ◽  
Hengjie Li ◽  
Xin Li ◽  
Chunlin Hu ◽  
...  

Abstract Neural stem cells (NSCs) transplantation is one of the most promising strategies for the treatment of CA-induced brain damage. The transplanted NSCs could differentiate into new neuron and replace the damaged one. However, the poor survival of NSCs in severe hypoxic condition is the limiting step to make the best use of this kind of therapy. In the present study, we investigated whether the overexpression of miR-26a improves the survival of NSCs in hypoxic environment in vitro and in vivo. In vitro hypoxia injury model is established in NSCs by CoCl2 treatment, and in vivo cardiac arrest (CA) model is established in Sprague-Dawley (SD) rats. Quantitative real-time polymerase chain reaction is used to detect the mRNA level and Western blot is used to examine the protein level of indicated genes. TUNEL staining and flow cytometry are applied to evaluate apoptosis. Dual-luciferase reporter assay is utilized to analyze the target gene of miR-26a. The expression of miR-26a is reduced in both in vitro and in vivo hypoxic model. MiR-26a directly targets 3′-UTR of glycogen synthase kinase 3β (GSK-3β), resulting in increased β-catenin expression and decreased apoptosis of NSCs. Overexpression of miR-26a in transplanted NSCs improves the survival of NSCs and neurological function in CA rats. MiR-26a prevents NSCs from apoptosis by activating β-catenin signaling pathway in CA-induced brain damage model. Modulating miR-26a expression could be a potential strategy to attenuate brain damage induced by CA.


2021 ◽  
Author(s):  
Jialin Wang ◽  
Xinxing Du ◽  
Xiao Wang ◽  
Huixiang Xiao ◽  
Nan Jing ◽  
...  

Abstract Background The majority of the deaths of prostate cancer (PCa) are caused by progression to bone metastatic PCa. The importance of extracellular vesicles (EVs) in the formation of the pre-metastatic niche has been demonstrated in recent years. However, whether and how tumor-derived EVs interact with bone marrow macrophages (BMMs) to release EV-delivered microRNAs to promote osteolysis and to activate pre-metastatic niche formation for PCa bone metastasis remain unclear. Methods Bioinformatics and qRT-PCR analyses were used to screen microRNAs and to identify the elevated expression of miR-378a-3p in both serum-derived EVs from PCa patients and in culture medium-derived EVs from PCa cell lines. Functional assays in vitro and in vivo were performed to investigate the functions of miR-378a-3p during PCa progression. IF staining and Dual-luciferase reporter, co-IP, western blot, RIP and ChIP assays were conducted to reveal the underlying mechanism. Results We found that EV-mediated release of miR-378a-3p from tumor cells was upregulated in bone-metastatic PCa which keeps a low intracellular concentration of miR-378a-3p, to promote proliferation and the MAOA-mediated epithelial-to-mesenchymal transition (EMT) in PCa cells. In addition, we demonstrated that the enrichment of miR-378a-3p in tumor derived EVs was induced by overexpression of hnRNPA2B1 as a transfer chaperone. After miR-378a-3p-enriched EVs were taken in by BMMs, elevated intracellular concentration of miR-378a-3p promoted osteolytic progression by targeting the Dyrk1a/Nfatc1 pathway. Mechanistically, inhibition of Dyrk1a by miR-378a-3p improved the nuclear translocation of Nfatc1 to promote expression of the downstream target gene Angptl2. As a feedback, increased secretion of Angptl2 into the tumor environment promoted PCa progression. Conclusions Our findings indicate that tumor-derived miR-378a-3p-containing EVs play a significant role in promoting prostate cancer bone metastasis by activating a Dyrk1a/Nfatc1/Angptl2 axis in BMMs to induce osteolytic progression, which implicates that miR-378a-3p may be a potential predictor of metastatic PCa. Moreover, reducing the release of miR-378a-3p-containing EVs or inhibiting the recruitment of miR-378a-3p into tumor-derived EVs might be a potential therapeutic strategy for PCa metastasis.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanhong Li ◽  
Jing Wang ◽  
Yanchao Ma ◽  
Wenjia Du ◽  
Haijun Feng ◽  
...  

Abstract Background Osteogenic differentiation is an essential process for bone regeneration involving bone marrow mesenchymal stem cells (BMSCs). BMSC-secreted extracellular vesicles (EVs) enriched with microRNAs (miRs) have vital roles to play in mediating osteogenic differentiation. Therefore, this study aimed to explore the effect of BMSC-derived EVs loaded with miR-15b on osteogenic differentiation. Methods Human BMSCs (hBMSCs) were cultured and treated with plasmids overexpressing or knocking down KLF2, WWP1, and miR-15b to define the role of derived EVs in osteogenic differentiation in vitro. The expression of osteogenic differentiation-related marker was measured by Western blot analysis. The interaction among miR-15b, WWP1, and ubiquitination of KLF2 was investigated by dual-luciferase reporter, immunoprecipitation, and GST pull-down assays. Moreover, EVs from hBMSCs transfected with miR-15b inhibitor (EV-miR-15b inhibitor) were injected into ovariectomized rats to verify the effect of miR-15b on bone loss in vivo. Results WWP1 was downregulated, and KLF2 was upregulated during osteogenic differentiation. After co-culture with EVs, miR-15b expression was elevated and WWP1 expression was reduced in hBMSCs. Upregulation of miR-15b or KLF2 or downregulation of WWP1 or NF-κB increased ALP activity and cell mineralization, as well as osteogenic differentiation-related marker expression in hBMSCs. Mechanistically, miR-15b targeted and inhibited WWP1, thus attenuating KLF2 degradation and inhibiting NF-κB activity. Co-culture of EVs increased the bone volume and trabecular number, but decreased bone loss in ovariectomized rats, which could be reversed after treatment with EV-miR-15b inhibitor. Conclusion Collectively, BMSC-derived EVs loaded with miR-15b promoted osteogenic differentiation by impairing WWP1-mediated KLF2 ubiquitination and inactivating the NF-κB signaling pathway. Graphical abstract


2020 ◽  
Vol 49 (5) ◽  
pp. 462-473
Author(s):  
Jingwen Ma ◽  
Xiaohua Tao ◽  
Youming Huang

<b><i>Background:</i></b> Hemangioma (Hem) is a benign tumor commonly seen in infancy with a relative high morbidity. Human umbilical vein endothelial cell (HUVEC)-derived extracellular vesicles (EVs) are actively participated in Hem. Therefore, this study is designed to figure out the underlying mechanism of HUVEC-derived EVs in Hem. <b><i>Methods:</i></b> Initially, EVs were separated from HUVECs and identified. HUVEC-derived EVs in normoxia or hypoxia were then cultivated with Hem endothelial cells (HemECs) to test the proliferation, apoptosis, and migration of HemECs. Microarray analysis was performed to select microRNAs (miRs) with differential expression. miR-210 in hypoxia-induced HUVECs was silenced, and the relevant EVs were extracted and then co-cultured with HemECs to perform biological effect experiments. Then, the target relation between miR-210 and homeobox A9 (HOXA9) was identified by the dual luciferase reporter gene assay and RNA immunoprecipitation assay. Moreover, xenograft transplantation was also applied to confirm the in vitro experiments. <b><i>Results:</i></b> Hypoxia-induced HUVECs promoted release of EVs, which were absorbed by HemECs. Hypoxia-induced HUVEC-EVs promoted HemEC proliferation and migration and inhibited apoptosis. miR-210 from the hypoxia-induced HUVEC-EVs was highly expressed and promoted HemEC growth. Silencing miR-210 expression in the hypoxia-induced HUVEC-EVs suppresses Hem development in vivo. In addition, miR-210 targeted HOXA9. <b><i>Conclusion:</i></b> Silencing miR-210 in HUVEC-derived EVs could suppress Hem by targeting HOXA9. This investigation may provide novel insights for Hem treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yamei Zhang ◽  
Junying Liu ◽  
Mi Su ◽  
Xin Wang ◽  
Chenchen Xie

Abstract Background Cerebral ischemia-reperfusion (I/R) injury, the most common form of stroke, has high mortality and often brings persistent and serious brain dysfunction among survivors. Administration of adipose-derived mesenchymal stem cells (ASCs) has been suggested to alleviate the I/R brain injury, but the mechanism remains uncharacterized. Here, we aimed at investigating the mechanism of ASCs and their extracellular vesicles (EVs) in the repair of or protection from I/R injury. Methods We established the middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation/reperfusion (OGD/RP) neuron model. ASCs or ASC-derived EVs (ASC-EVs) were co-cultured with neurons. RT-qPCR and Western blot analyses determined microRNA (miRNA)-22-3p, BMP2, BMF, and KDM6B expression in neurons upon treatment with ASC-EVs. Bioinformatics analysis predicted the binding between miR-22-3p and KDM6B. Using gain- and loss-of-function methods, we tested the impact of these molecules on I/R injury in vivo and in vitro. Results Treatment with ASCs and ASC-derived EVs significantly alleviated the I/R brain injury in vivo, elevated neuron viability in vitro, and decreased apoptosis. Interestingly, miR-22-3p was upregulated in ASC-EVs, and treatment with EV-miR-22-3p inhibitor led to increased apoptosis and decreased neuronal. Of note, miR-22-3p bound to and inhibited KDM6B, as demonstrated by dual-luciferase reporter gene assay and Western blot assay. Overexpression of KDM6B enhanced apoptosis of neurons in the OGD/RP model, and KDM6B bound to BMB2 and promoted its expression by binding to BMP2. Silencing of BMF reduced infarct volume and apoptosis in the stroke model. Conclusion Results support a conclusion that ASC-EV-derived miR-22-3p could alleviate brain ischemic injury by inhibiting KDM6B-mediated effects on the BMP2/BMF axis. These findings compelling indicate a novel treatment strategy for cerebral ischemic injury.


Author(s):  
Mohammad Ghiasloo ◽  
Laura De Wilde ◽  
Kashika Singh ◽  
Patrick Tonnard ◽  
Alexis Verpaele ◽  
...  

Abstract Background Recent evidence confirms that mesenchymal stem cells (MSCs) facilitate angiogenesis mainly through paracrine function. Extracellular vesicles (EVs) are regarded as key components of the cell secretome, possessing functional properties of their source cells. Subsequently, MSC-EVs have emerged as a novel cell-free approach to improve fat graft retention rate. Objectives To provide a systematic review of all studies reporting the use of MSC-EVs to improve graft retention rate. Methods A systematic search was undertaken using the Embase, PubMed and the Cochrane Central Register of Controlled Trials databases. Outcome measures included donor/receptor organism of the fat graft, study model, intervention groups, evaluation intervals, EV research data, in vitro and in vivo results. Results Of the total 1717 articles, 62 full-texts were screened. Seven studies reporting on 294mice were included. Overall, EV treated groups showed higher graft retention rates compared to untreated groups. Notably, retention rate was similar following EV- and MSC-treatment. In addition to reduced inflammation, graft enrichment with EVs resulted in early revascularization and better graft integrity. Interestingly, hypoxic preconditioning of MSCs improved their beneficial paracrine effects and led to a more proangiogenic EV population, as observed by both in vitro and in vivo results. Conclusions MSC-EVs appear to offer an interesting cell-free alternative to improve fat graft survival. While their clinical relevance remains to be determined, it is clear that not the cells, but their secretome is essential for graft survival. Thus, a paradigm shift from cell-assisted lipotransfer towards ‘secretome-assisted lipotransfer’ is well on its way.


Sign in / Sign up

Export Citation Format

Share Document