scholarly journals Molecular Characterization, Expression and Functional Analysis of Yak IFITM3 Gene

Author(s):  
Haipeng Wang ◽  
Li Wang ◽  
Juan Li ◽  
Fang Fu ◽  
Yao Zheng ◽  
...  

Abstract Background IFITM3 is interferon-induced transmembrane 3, which plays an extremely key role in anti-proliferation, anti-virus and anti-tumor diseases. To expand our understanding of the role of IFITM3 in yak, this experiment studied its function. Results Firstly, the yak ( Bos grunniens ) IFITM3 ( BgIFITM3 ) gene contained a 5’-untranslated region (UTR) (25 bp), a coding region (441 bp), and a 3’-UTR (115 bp). The expression of BgIFITM3 gene in liver was significantly higher than that in heart, spleen, lung and kidney ( P <0.01). BgIFITM3 protein was localized on the yak hepatocyte membrane, and its expression level was increased first and then stabilized from 1 day to 5 years of age. Moreover, the prokaryotic expression vector of BgIFITM3 protein was constructed and expressed successfully, with a molecular weight of 19.5 kDa. Besides, the activity of yak hepatocyte was significantly inhibited after treating with BgIFITM3 protein (10 and 20 μg/mL) ( P <0.01). The expression levels of ERBB-2, IRS-1, PI3KR-1, AKT-1 and MAPK-3 were significantly lower after treating with 20 μg/mL BgIFITM3 protein ( P <0.05). Finally, the activity of HepG2 cells was significantly inhibited after treating with BgIFITM3 protein (1, 10 and 20 μg/mL) ( P <0.05). While the cloning ability and migration ability of HepG2 cells were significantly inhibited after treating with 10 μg/mL BgIFITM3 protein ( P <0.05). The mitochondria of HepG2 cells were concentrated, cristae widened, and the double film density of mitochondria was increased after treating with 10 μg/mL BgIFITM3 protein. After 10 μg/mL BgIFITM3 protein treating, the expression levels of VDAC-2, VDAC-3 , p53 genes were significantly increased, but the expression level of GPX-4 gene was significantly decreased ( P <0.01). Conclusion Taken together, the BgIFITM3 protein could inhibit the proliferations of yak hepatocyte and HepG2 cells by regulating the PI3K/Akt pathway or ferroptosis-related genes, respectively. These results benefit for further study of the function of BgIFITM3 protein.

2020 ◽  
Vol 15 (1) ◽  
pp. 49-58
Author(s):  
Junhe Zhang ◽  
Shujie Chai ◽  
Xinyu Ruan

Background: Breast cancer is among the most common malignant cancers worldwide, and breast adenocarcinoma in glandular tissue cells has excessive metastasis and invasion capability. However, little is known on the molecular process by which this disease develops and progresses. Objective: In this study, we explored the effects of sex-determining region Y-box 4 (SOX4) protein on proliferation, migration, apoptosis and tumourigenesis of breast adenocarcinoma and its possible mechanisms. Methods: The SOX4 overexpression or knockdown Michigan Cancer Foundation-7 (MCF-7) cell lines were established. Among the SOX4 overexpression or MCF-7 knockdown cell lines, proliferation, migration ability and apoptosis rate were detected. The expression levels of apoptosis-related proteins (Bax and Cleaved caspase-3) were analysed using Western blot. The effect of SOX4 on tumourigenesis was analysed using the clone formation assay in vitro and tumour xenograft experiment in nude mice. Results: Compared with the overexpression of control cells, proliferation and migration ability of SOX4 overexpression cells significantly increased, the apoptosis rate significantly decreased in addition to the expression levels of Bax and Cleaved caspase-3 (P < 0.05). Compared with the knockdown of control cells, proliferation and migration ability of SOX4 knockdown cells significantly decreased, and the apoptosis rate and expression levels of Bax and Cleaved caspase-3 significantly increased (P < 0.05). Clone formation and tumour growth abilities of SOX4 overexpression cells were significantly higher than those of the control cells (P < 0.05), whereas SOX4 knockdown cells had the opposite effect. Conclusion: SOX4 plays an oncogenic role in breast adenocarcinoma tumourigenesis by promoting cell proliferation, migration and inhibiting apoptosis. It can be used as a potential molecular target for breast cancer gene therapy.


2020 ◽  
Vol 21 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Mohamed A. Ragheb ◽  
Marwa H. Soliman ◽  
Emad M. Elzayat ◽  
Mervat S. Mohamed ◽  
Nada El-Ekiaby ◽  
...  

Background: Doxorubicin (DOX) is the most common drugs used in cancer therapy, including Hepatocellular Carcinoma (HCC). Drug resistance, is one of chemotherapy’s significant problems. Emerging studies have shown that microRNAs (miRNAs) could participate in regulating this mechanism. Nevertheless, the impact of miRNAs on HCC chemoresistance is still enigmatic. Objective: Investigating the role of miR-520c-3p in enhancement of anti-tumor effect of DOX against HepG2 cells. Methods: Expression profile for liver related miRNAs (384 miRNAs) has been analyzed on HepG2 cells treated with DOX using qRT-PCR. miR-520c-3p, the most deregulated miRNA, was selected for combination treatment with DOX. Expression level for LEF1, CDK2, CDH1, VIM, Mcl-1 and TP53 was evaluated in miR-520c-3p transfected cells. Cell viability, colony formation, wound healing as well as apoptosis assays have been demonstrated. Furthermore, Mcl-1 protein level was measured using western blot technique. Results: The present data indicated that miR-520c-3p overexpression could render HepG2 cells chemo-sensitive to DOX through enhancing its suppressive effects on proliferation, migration, and induction of apoptosis. The suppressive effect of miR-520c-3p involved altering the expression levels of some key regulators of cell cycle, proliferation, migration and apoptosis including LEF1, CDK2, CDH1, VIM, Mcl-1 and TP53. Interestingly, Mcl-1 was found to be one of the potential targets of miR-520c-3p, and its protein expression level was down-regulated upon miR-520c-3p overexpression. Conclusion: Our data referred to the tumor suppressor function of miR-520c-3p that could modulate chemosensitivity of HepG2 cells toward DOX treatment, providing a promising therapeutic strategy in HCC.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 317-326
Author(s):  
Dongqiang Song ◽  
Beili Xu ◽  
Dongmin Shi ◽  
Shuyu Li ◽  
Yu Cai

AbstractPurposeS100A6 protein (calcyclin), a small calcium-binding protein of the S100 family, is often upregulated in various types of cancers, including hepatocellular carcinoma (HCC). The aim of this study was to illustrate the molecular mechanism of S100A6 in regulating the proliferation and migration of HCC cells.MethodsThe expressions of S100A6 in human HCC and adjacent non-tumor liver specimens were detected using immunoblotting and quantitative PCR (qPCR). The recombinant glutathione S-transferase (GST)-tagged human S100A6 protein was purified and identified. After treatment with S100A6, the proliferation of HepG2 cells was detected by the MTT and colony formation assay, and the migration of HepG2 cells was investigated by the transwell migration assay; the protein levels of cyclin D1 (CCND1), E-cadherin, and vimentin were also tested by immunoblotting. The effect of S100A6 on p21 and nuclear factor-κB pathway was verified by performing the dual luciferase assay. Then, the expression of p21 and its transcription activator, p53, was examined using immunoblotting and qPCR, the ubiquitination of which was investigated through co-immunoprecipitation.ResultsIt was found that the level of S100A6 was higher in the HCC tissues than in the adjacent non-tumor liver specimens. Exogenous overexpression of S100A6 promoted the proliferation and migration of HepG2 cells. S100A6 was observed to regulate p21 mRNA and protein expression levels and decrease p53 protein expression level, not mRNA level, by promoting the ubiquitination of p53 via the proteasome-dependent degradation pathway.ConclusionOur study indicated that S100A6 overexpression could promote the proliferation and migration of HCC cells by enhancing p53 ubiquitin-dependent proteasome degradation, ultimately regulating the p21 expression level.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii24-iii24
Author(s):  
Q Chang ◽  
L Zhu ◽  
N Li

Abstract BACKGROUND Medulloblastoma (MB) is the most common malignant paediatric brain tumor. Recent studies show that M2 cells were relative more abundant in Shh subtype of MBs compared with other three subtypes. It’s known that M2 cells have close relationship with many tumors’ progression. But if they play any role in the progression of Shh subtype of MB is not yet clear. Many studies demonstrate that exosomes carring miRNAs have close relationship with tumor invasion. The aim of present study is to clarify the role of exosome miRNA between tumor cells and microglias during the progression of Shh subtype of medulloblastoma. MATERIAL AND METHODS Immunofluerescence staining using iNOS and Arg1, which is M1 and M2 specific marker, respectively, was performed in four subtypes of MBs. After coculture of exosomes extracted from Shh subtype of MB cell (DAOY) with microglia cell (BV2), Q-PCR and ELISA assay were done to evaluate the polarization status of the microglia. Transwell and scratch assay were then performed to detect the migration ability of DAOY cell after treatment of exosomes from polirized M2 cells. MiRNA sequencing by Ion Proton technology was then done to analyze the miRNAs expression level between Shh subtype and other subtype of MBs. Transformation assay was used to overexpress and inhibit the expression of these miRNAs respectively to further clarify the role of exosome miRNA in the polarization of BV2 cells. RESULTS M2 cells were observed more abundant than other three subtypes of tumors, supporting that M2 cells play some role in this subtype of MBs. Exosomes of DAOY cells can induce the polarization of M2 cells. The polarized M2 cells can improved the migration and invasion ability of DAOY cell. Dozens of miRNAs were identified with different expression level between Shh subtype of MBs and other subtype of MB cells. Among them, 4 miRNAs were reported to be related with polariztion of M2 in many other lesions. Three of the 4 miRNAs can induce the polarization of M2 in present study. CONCLUSION Our study demonstrated exosome miRNA play a critical role between tumor cells and microglias during the progression of Shh subtype of medulloblastoma.


2019 ◽  
Vol 51 (7) ◽  
pp. 661-668 ◽  
Author(s):  
Xiaoli Tang ◽  
Meiyuan Yang ◽  
Zheng Wang ◽  
Xiaoqing Wu ◽  
Daorong Wang

Abstract The functional role of microRNA-23a in tumorigenesis has been investigated; however, the exact mechanism of microRNA-23a (miR-23a) in colorectal cancer development has not been fully explored. In the present study, we aimed to investigate the molecular functional role of miR-23a in colorectal carcinogenesis. Quantitative real-time polymerase chain reaction was conducted to investigate the expression level of miR-23a in tissue samples and cell lines (HCT116 and SW480). CCK-8, colony formation and Transwell assay were used to explore the role of miR-23a in cell proliferation and migration. Dual luciferase reporter assay was used to identify the direct binding of miR-23a with its target, MARK1. Western blot analysis was used to analyze the expression level of MARK1, as well as a confirmed miR-23a target gene, MTSS1, in miR-23a-mimic and miR-23a-inhibit groups. Rescue experiments were conducted by overexpression of MARK1 in miR-23a-mimic-transfected cell lines. The results showed that miR-23a was highly expressed in colorectal cancer tissue and cell lines. MiR-23a could promote proliferation and migration of colorectal cancer cell lines. MARK1 was a direct target of miR-23a and the expression level of MARK1 was down-regulated in miR-23a-mimic-transfected cell lines but up-regulated in miR-23a-inhibit-transfected cells. Overexpression of MARK1 could partly reverse the cancer-promoting function of miR-23a. Our results suggested that miR-23a promotes colorectal cancer cell proliferation and migration by mediating the expression of MARK1. MiR-23a may be a potential therapeutic target for colorectal cancer treatment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3324-3324
Author(s):  
Seiji Fukuda ◽  
Nozomi Matsuda

Abstract RUNX1 generally functions as a tumor suppressor in the hematopoietic system. However, RUNX1 expression is significantly elevated in human AML cells with FLT3/ITD mutations, promotes leukemogenesis induced by FLT3/ITD (Behrens et al. JEM 2017) and enhances the resistance of FLT3/ITD + cells to type-II FLT3 inhibitor quizartinib (Hirade et al IJH 2016). We previously reported that RUNX1 expression is higher in CXCR4-low FLT3/ITD + cells compared to Cxcr4-high FLT3/ITD + cells, even though Cxcr4 expression is trans-activated by RUNX1. This difference in RUNX1 expression level was associated with divergent response to CXCL12 in FLT3/ITD + cells harboring different CXCR4 expression levels that were exposed to quizartinib (Fukuda S. et al. ASH 2019). Our data also demonstrated that RUNX1 expression is down-regulated following withdrawal of quizartinib in FLT3/ITD + cells that became refractory to quizartinib (Hirade et al. IJH 2016), suggesting that RUNX1 expression may be up-regulated by quizartinib in FLT3/ITD + cells. Since RUNX1 regulates proliferation of FLT3/ITD + AML cells, the present study investigated association between RUNX1 expression levels and proliferation of quizartinib resistant FLT3/ITD + cells that are exposed to quizartinib. In the sensitive FLT3/ITD + Ba/F3 cells, RUNX1 protein expression was transiently up-regulated but eventually down-regulated by 5 nM quizartinib, coincident with decline in the viable cells. In contrast, RUNX1 expression was up-regulated by quizartinib and remained elevated in the resistant FLT3/ITD + Ba/F3 cells. Since RUNX1 enhances proliferation of FLT3/ITD + cells, we next examined whether proliferation FLT3/ITD + cells that acquired resistance to quizartinib is facilitated by quizaritinib as a result from quizartinib-mediated up-regulation of RUNX1, using the Cxcr4-low and Cxcr4-high FLT3/ITD + cells that acquired resistance to quizartinib. Although CXCL12 barely enhanced the proliferation of refractory FLT3/ITD + Ba/F3 cells, 5 nM quizartinib significantly increased the proliferation of both Cxcr4-low and Cxcr4-high FLT3/ITD + Ba/F3 cells that acquired resistance to quizartinib compared to those without quizartinib. This increase in the proliferation of Cxcr4-low and Cxcr4-high FLT3/ITD + Ba/F3 cells coincided with the elevation in RUNX1 and CXCR4 protein expression. Moreover, the resistant Cxcr4-low FLT3/ITD + Ba/F3 cells proliferated significantly faster than Cxcr4-high FLT3/ITD + cells, with concomitant higher expression of RUNX1 in Cxcr4-low FLT3/ITD + cells than in Cxcr4-high FLT3/ITD + cells. Likewise, type-I FLT3 inhibitor gilteritinib significantly enhanced proliferation of Cxcr4-low and Cxcr4-high FLT3/ITD + Ba/F3 cells that acquired resistance to gilteritinib. Knocking down Runx1 using shRNAs significantly decreased the enhanced proliferation induced by quizartinib in refractory FLT3/ITD + Ba/F3 cells, coincident with reduction in CXCR4 expression. Since CXCR4 expression level was elevated by quizartinib in the FLT3/ITD + cells refractory to quizartinib, we next examined CXCL12-induced migration in quizartinib-resistant FLT3/ITD + cells following exposure to quzartinib. Pre-incubating the quizartinib resistant Cxcr4-low or Cxcr4-high FLT3/ITD + Ba/F3 cells with 5 nM quizartinib for 72 hours significantly enhanced their migration to 100 ng/ml of Cxcl12 compared to those without quizartinib, coincident with elevation in RUNX1 levels. Surprisingly, migration of CXCR4-low FLT3/ITD + cells to CXCL12 was significantly elevated compared to CXCR4-high cells, with concomitant higher expression of RUNX1 in Cxcr4-low FLT3/ITD + cells than in Cxcr4-high FLT3/ITD + cells. Silencing Runx1 using shRNAs significantly decreased migration to CXCL12 in refractory Cxcr4-low FLT3/ITD + Ba/F3 cells. These data indicate that the FLT3 inhibitor itself can facilitate the proliferation and migration to CXCL12 in FLT3/ITD + cells that are refractory to FLT3 inhibitors by up-regulating RUNX1. The results implicate that FLT3 inhibitors may worsen the disease progression in the patients that became refractory to FLT3 inhibitors by facilitating proliferation and migration to CXCL12 of the resistant FLT3/ITD + AML cells. In this regard, targeting RUNX1 may represent additional strategy to eradicate resistant FLT3/ITD + AML cells, in which their proliferation and migration are supported by FLT3 inhibitors. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 10 (4) ◽  
pp. 595-601 ◽  
Author(s):  
Monireh Khordadmehr ◽  
Roya Shahbazi ◽  
Behzad Baradaran ◽  
Sanam Sadreddini ◽  
Dariush Shanebandi ◽  
...  

Purpose : Recent evidence presented the important role of microRNAs in health and disease particularly in human cancers. Among those, miR-193 family contributes as a tumor suppressor in different benign and malignant cancers like breast cancer (BC) via interaction with specific targets. On the other hand, it was stated that miR-193 is able to modulate some targets in chemoresistant cancer cells. Therefore, the aim of this study was to evaluate the potential function of miR-193a-5p and paclitaxel in the apoptosis induction by targeting P53 in BC cells. Methods: At first, miR-193a-5p mimics were transfected to MDA-MB-231 BC cell line which indicated the lower expression level of miR-193a-5p. Subsequently, the transfected cells were treated with paclitaxel. Then, cell viability, apoptosis, and migration were evaluated by MTT, flow cytometry and DAPI staining, and scratch-wound motility assays, respectively. Moreover, the expression levels of P53 was evaluated by qRT-PCR. Results: The expression level of miR-193a-5p was restored in MDA-MB-231 cells which profoundly inhibited the proliferation (P<0.0001), induced apoptosis (P<0.0001) and harnessed migration (P<0.0001) in the BC cells and more effectiveness was observed in combination with paclitaxel. Interestingly, increased miR-193a-5p expression led to a reduction in P53 mRNA, offering that it can be a potential target of miR-193a. Conclusion: Taken together, it is concluded that the combination of miR-193a-5p restoration and paclitaxel could be potentially considered as an effective therapeutic strategy to get over chemoresistance during paclitaxel chemotherapy


Author(s):  
Yangyang Liu ◽  
Yonglu Li ◽  
Wen Chen ◽  
Xiang Ye ◽  
Ruoyi Jia ◽  
...  

Abstract: Tetrastigma hemsleyanum has been regarded as an anticancer food in China. However, its corresponding mechanisms remains unclear. Thus, in this study, the antitumor activity of flavones-rich fraction of root of Tetrastigma hemsleyanum (FRTH) was investigated in vitro and in vivo. The results indicated that FRTH could inhibit the proliferation and migration of HepG2 cells in vitro by PI3K/AKT pathway. FRTH could increase the ROS level and change the mitochondrial membrane potential (MMP) in HepG2 cells. In addition, FRTH treatment (300, 600 mg/kg BW) significantly suppressed tumor growth on HepG2 tumor-bearing nude mice. Besides, immunohistochemistry assays and western blotting revealed that FRTH enhanced the expression level of Bax/Bcl-2, cytochrome C, Caspase-3, caspase-9, Cleaved-caspase-3, and downregulated the expression level of CD31, ki67 and VEGF in HepG2 tumor-bearing mice. Our study suggests Tetrastigma hemsleyanum as a promising candidate medicine for liver cancer treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Juan Cao ◽  
Zhongying Huang ◽  
Shunling Ou ◽  
Feiqiu Wen ◽  
Guocheng Yang ◽  
...  

As a research hotspot, circular RNAs (circRNAs) is one type of non-coding RNAs which have many different functions in biological processes. However, there is lack of study investigating the underlying molecular mechanism and the potential roles of circRNAs in Wilms tumor. We conducted a high-throughput microarray sequencing to screen differentially expressed circRNAs in Wilms tumor. A novel circRNA (circ0093740) was identified as a frequently upregulated circRNA in Wilms tumor cells and tissues. Suppression of circ0093740 remarkably inhibited the proliferation and migration ability in Wilms tumor, validated by several experiments. The molecular mechanism of circ0093740 was investigated by luciferase assays and RNA immunoprecipitation assays. The results revealed that circ0093740 promotes the growth and migration ability by sponging miR-136/145 and upregulating DNMT3A. In conclusion, our study discovered the biological role of the circ0093740-miR-136/145-DNMT3A axis in Wilms tumor growth and metastasis which is important for developing new treatment strategy.


2020 ◽  
Author(s):  
Han Hong ◽  
Chengjun Sui ◽  
Tao Qian ◽  
Xiaoyong Xu ◽  
Xiang Zhu ◽  
...  

Abstract Background: Long-chain non-coding RNA (LncRNA) plays a key role in the biological processes of tumors. LncRNA CASC15 has been shown to be involved in the development of a variety of tumors. The study aimed to elucidate the mechanism of lncRNA CASC15 in the progression of hepatocellular carcinomas (HCC).Methods: qRT-PCR was used to detect the expression levels of CASC15, miR-2355-5p and Six1 mRNA in HCC tissues and cells. Six1 protein expression levels were detected by Western Blot. CCK-8 experiment, colony formation experiment, Edu staining and Transwell experiment analysis were used to analyze the effects of CASC15, miR-2355-5p and Six1 on cell proliferation, cell invasion and migration. The relationship between CASC15, miR-2355-5p and Six1 was analyzed using bioinformatics analysis and Luciferase.Result: CASC15 was raised in HCC tissues and HCC cells. Down-regulation of CASC15 inhibited the growth, migration, invasion and tumor growth of HCC cells. The expression level of miR-2355-5p was reduced in HCC tissues. In addition, miR-2355-5p inhibitor induced the growth, migration and invasion of HCC cells. MiR-2355-5p was predicted to be a downstream target of CASC15. The expression level of miR-2355-5p was negatively correlated with CASC15 in HCC tumor tissues. Six1 was predicted to be a downstream target of miR-30a-5p. In vitro and in vivo results showed that CASC15/miR-2355-5p can regulate Six1.Conclusion: LncCASC15 regulated the proliferation and invasion of Six1 by binding with miR-2355-5p in HCC, suggesting that CASC15 may be a potential target for HCC.


Sign in / Sign up

Export Citation Format

Share Document