scholarly journals Reduced H3K27me3 Suppresses Wnt/β-catenin Signaling by S-adenosylmethionine Deficiency in Neural Tube Development

Author(s):  
Li Zhang ◽  
Xiuwei Wang ◽  
Rui Cao ◽  
Dandan Li ◽  
Yufei Wang ◽  
...  

Abstract Background: S-adenosylmethionine as a major methyl donor play a key role in methylation modification in vivo, and its disorder was closely related to neural tube defects. However, the underlying mechanism between SAM deficiency and NTDs remained unclear.Methods: we investigated the association between histone methylation modification and Wnt/β-catenin signaling pathway in NTDs induced by SAM deficiency. The levels of SAM and SAH were determined by enzyme linked immunosorbent assay. The expressions of H3K27me3 and Wnt/β-catenin signaling pathway specific markers were demonstrated by western blotting, reverse transcription, and quantitative PCR and immunofluorescence in ethionine induced E11.5 mouse NTDs and NSCs models. Results: we found that the incidence rate of NTDs induced by ethionine were 46.2%, post treatment of ethionine combined with SAM, the incidence rate of NTDs was reduced to 26.2%. The level of SAM was significantly decreased (P<0.05) and a reduction in the SAM/SAH ratio was observed. The SAM depletion caused the reduction of both H3K27me3 modifications and UTX activity, and inhibited the marker proteins (β-catenin, TCF-4, Axin-2, p-GSK-3β, CyclinD1, and C-myc) in Wnt/β-catenin signaling pathway (P<0.05). The differentiations of neural stem cells into neurons and oligodendrocytes were inhibited under SAM deficiency (P<0.05).Conclusions: These results indicated that the depletion of SAM led to reduced H3K27me3 modifications, prevented the activation of Wnt/β-catenin signaling pathway and NSCs differentiation, which provided an understanding of the novel function of epigenetic regulation in NTDs.

2021 ◽  
Author(s):  
Li Zhang ◽  
Xiuwei Wang ◽  
Dandan Li ◽  
Yufei Wang ◽  
Xueqin Liu ◽  
...  

Abstract S-adenosylmethionine (SAM) as a major methyl donor play a key role in methylation modification in vivo, and its disorder was closely related to neural tube defects (NTDs). However, the underlying mechanism between SAM deficiency and NTDs remained unclear. Here, we investigated the association between histone methylation modification and Wnt/β-catenin signaling pathway in NTDs induced by SAM deficiency. The levels of SAM and SAH were determined by enzyme linked immunosorbent assay (ELISA). The expressions of H3K27me3 and Wnt/β-catenin signaling pathway specific markers were demonstrated by western blotting, reverse transcription, and quantitative PCR (RT-qPCR) and immunofluorescence in ethionine induced E11.5 mouse NTDs and NSCs models. The results showed that the incidence rate of NTDs induced by ethionine were 46.2%, post treatment of ethionine combined with SAM, the incidence rate of NTDs was reduced to 26.2%. The level of SAM was significantly decreased (P<0.05) and a reduction in the SAM/SAH ratio was observed. The SAM depletion caused the reduction of both H3K27me3 modifications and UTX activity, and inhibited the marker proteins (β-catenin, TCF-4, Axin-2, p-GSK-3β, CyclinD1, and C-myc) in Wnt/β-catenin signaling pathway (P<0.05). The differentiations of neural stem cells (NSCs) into neurons and oligodendrocytes were inhibited under SAM deficiency (P<0.05). These results indicated that the depletion of SAM led to reduced H3K27me3 modifications, prevented the activation of Wnt/β-catenin signaling pathway and NSCs differentiation, which provided an understanding of the novel function of epigenetic regulation in NTDs.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ling Gao ◽  
Xian Shao ◽  
Qingqing Yue ◽  
Weifei Wu ◽  
Xuejuan Yang ◽  
...  

Accumulating evidence indicates that the dysregulation of circular RNAs (circRNAs) contributes to tumor progression; however, the regulatory functions of circRNAs in renal cell carcinoma (RCC) remain largely unknown. In this study, the function and underlying mechanism of circAMOTL1L in RCC progression were explored. qRT-PCR showed the downregulation of circAMOTL1L in RCC tissues and cell lines. The decrease in circAMOTL1L expression correlated with the tumor stage, metastasis, and poor prognosis in patients with RCC. Functional experiments revealed that circAMOTL1L inhibited cell proliferation and increased apoptosis in RCC cells. Subcutaneous implantation with circAMOTL1L-overexpressing cells in nude mice decreased the growth ability of the xenograft tumors. Mechanistically, circAMOTL1L served as a sponge for miR-92a-2-5p in upregulating KLLN (killin, p53-regulated DNA replication inhibitor) expression validated by bioinformatics analysis, oligo pull-down, and luciferase assays. Further, reinforcing the circAMOTL1L–miR-92a-2-5p–KLLN axis greatly reduced the growth of RCC in vivo. Conclusively, our findings demonstrate that circAMOTL1L has an antioncogenic role in RCC growth by modulating the miR-92a-2-5p–KLLN pathway. Thus, targeting the novel circAMOTL1L–miR-92a-2-5p–KLLN regulatory axis might provide a therapeutic strategy for RCC.


2017 ◽  
Vol 313 (3) ◽  
pp. F729-F739 ◽  
Author(s):  
Sarika Chaudhari ◽  
Weizu Li ◽  
Yanxia Wang ◽  
Hui Jiang ◽  
Yuhong Ma ◽  
...  

Our previous study demonstrated that the abundance of extracellular matrix proteins was suppressed by store-operated Ca2+entry (SOCE) in mesangial cells (MCs). The present study was conducted to investigate the underlying mechanism focused on the transforming growth factor-β1 (TGF-β1)/Smad3 pathway, a critical pathway for ECM expansion in diabetic kidneys. We hypothesized that SOCE suppressed ECM protein expression by inhibiting this pathway in MCs. In cultured human MCs, we observed that TGF-β1 (5 ng/ml for 15 h) significantly increased Smad3 phosphorylation, as evaluated by immunoblot. However, this response was markedly inhibited by thapsigargin (1 µM), a classical activator of store-operated Ca2+channels. Consistently, both immunocytochemistry and immunoblot showed that TGF-β1 significantly increased nuclear translocation of Smad3, which was prevented by pretreatment with thapsigargin. Importantly, the thapsigargin effect was reversed by lanthanum (La3+; 5 µM) and GSK-7975A (10 µM), both of which are selective blockers of store-operated Ca2+channels. Furthermore, knockdown of Orai1, the pore-forming subunit of the store-operated Ca2+channels, significantly augmented TGF-β1-induced Smad3 phosphorylation. Overexpression of Orai1 augmented the inhibitory effect of thapsigargin on TGF-β1-induced phosphorylation of Smad3. In agreement with the data from cultured MCs, in vivo knockdown of Orai1 specific to MCs using a targeted nanoparticle small interfering RNA delivery system resulted in a marked increase in abundance of phosphorylated Smad3 and in nuclear translocation of Smad3 in the glomerulus of mice. Taken together, our results indicate that SOCE in MCs negatively regulates the TGF-β1/Smad3 signaling pathway.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Jikui Sun ◽  
Quanfeng Ma ◽  
Banban Li ◽  
Chen Wang ◽  
Lidong Mo ◽  
...  

Abstract Accumulating evidence indicates that the dysregulation of the miRNAs/mRNA-mediated carcinogenic signaling pathway network is intimately involved in glioma initiation and progression. In the present study, by performing experiments and bioinformatics analysis, we found that RPN2 was markedly elevated in glioma specimens compared with normal controls, and its upregulation was significantly linked to WHO grade and poor prognosis. Knockdown of RPN2 inhibited tumor proliferation and invasion, promoted apoptosis, and enhanced temozolomide (TMZ) sensitivity in vitro and in vivo. Mechanistic investigation revealed that RPN2 deletion repressed β-catenin/Tcf-4 transcription activity partly through functional activation of glycogen synthase kinase-3β (GSK-3β). Furthermore, we showed that RPN2 is a direct functional target of miR-181c. Ectopic miR-181c expression suppressed β-catenin/Tcf-4 activity, while restoration of RPN2 partly reversed this inhibitory effect mediated by miR-181c, implying a molecular mechanism in which TMZ sensitivity is mediated by miR-181c. Taken together, our data revealed a new miR-181c/RPN2/wnt/β-catenin signaling axis that plays significant roles in glioma tumorigenesis and TMZ resistance, and it represents a potential therapeutic target, especially in GBM.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Liyan Mei ◽  
Meihong He ◽  
Chaoying Zhang ◽  
Jifei Miao ◽  
Quan Wen ◽  
...  

AbstractSepsis is a life-threatening disease caused by infection. Inflammation is a key pathogenic process in sepsis. Paeonol, an active ingredient in moutan cortex (a Chinese herb), has many pharmacological activities, such as anti-inflammatory and antitumour actions. Previous studies have indicated that paeonol inhibits the expression of HMGB1 and the transcriptional activity of NF-κB. However, its underlying mechanism is still unknown. In this study, microarray assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results confirmed that paeonol could significantly up-regulate the expression of miR-339-5p in RAW264.7 cells stimulated by LPS. Dual-luciferase assays indicated that miR-339-5p interacted with the 3′ untranslated region (3′-UTR) of HMGB1. Western blot, immunofluorescence and enzyme-linked immunosorbent assay (ELISA) analyses indicated that miR-339-5p mimic and siHMGB1 both negatively regulated the expression and secretion of inflammatory cytokines (e.g., HMGB1, IL-1β and TNF-α) in LPS-induced RAW264.7 cells. Studies have confirmed that IKK-β is targeted by miR-339-5p, and we further found that paeonol could inhibit IKK-β expression. Positive mutual feedback between HMGB1 and IKK-β was observed when we silenced HMGB1 or IKK-β. These results indicated that paeonol could attenuate the inflammation mediated by HMGB1 and IKK-β by upregulating miR-339-5p expression. In addition, we constructed CLP model mice by cecal ligation and puncture. Paeonol was used to intervene to investigate its anti-inflammatory effect in vivo. The results showed that paeonol could improve the survival rate of sepsis mice and protect the kidney of sepsis mice.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Tao Zhu ◽  
Changyi Li ◽  
Xue Zhang ◽  
Chunyan Ye ◽  
Shuo Tang ◽  
...  

The reduction of pulmonary surfactant (PS) is essential for decreased pulmonary compliance and edema in acute lung injury (ALI). Thyroid transcription factor-1 (TTF-1) plays a major role in the regulation of surfactant protein-A (SP-A), the most abundant protein component of PS. Simultaneously, the glucagon-like peptide-1 (GLP-1) analogue can enhance SP-A expression in the lung. However, the underlying mechanism is still unknown. The purpose of this study was to explore whether liraglutide, a GLP-1 analogue, upregulates SP-A expression through the TTF-1 signaling pathway in ALI. In vivo, a murine model of ALI was induced by lipopolysaccharide (LPS). Pulmonary inflammation, edema, insulin level, ultrastructural changes in type II alveolar epithelial (ATII) cells, and SP-A and TTF-1 expression were analyzed. In vitro, rat ATII cells were obtained. SP-A and TTF-1 expression in cells was measured. ShRNA-TTF-1 transfection was performed to knock down TTF-1 expression. Our data showed that LPS-induced lung injury and increase in insulin level, and LPS-induced reduction of SP-A and TTF-1 expression in both the lung and cells, were significantly compromised by liraglutide. Furthermore, we also found that these effects of liraglutide were markedly blunted by shRNA-TTF-1. Taken together, our findings suggest that liraglutide enhances SP-A expression in ATII cells and attenuates pulmonary inflammation in LPS-induced ALI, most likely through the TTF-1 signaling pathway.


2017 ◽  
Vol 43 (2) ◽  
pp. 481-491 ◽  
Author(s):  
Yihui Bi ◽  
Yapeng Zhu ◽  
Mingkai Zhang ◽  
Keke Zhang ◽  
Xingyi Hua ◽  
...  

Background/Aims: Shikonin, a compound extracted from Zicao, has been demonstrated to hold anti-bacterial, anti-inflammatory, and anti-tumor activities in various diseases and it has been shown to protect human organs from injuries. However, the effect of shikonin on the recovery of spinal cord injury (SCI) remains unknown. This study was designed to estimate the potential therapeutic effect and underlying mechanism of shikonin on SCI in vivo. Methods: In the study, we used HE staining, ELISA assay, transfection assay, TUNEL assay, real time PCR and Western blot to detect the effects of shikonin on spinal cord injury in rats. Results: we showed that shikonin could promote the recovery of motor function and tissue repair after SCI treatment in rats SCI model. Moreover, we demonstrated that shikonin inhibited the spinal cord edema in SCI model of rats. According to further investigation, shikonin induced the reduction of inflammatory response through decreasing the expression levels of HMGB1, TLR4 and NF-κB after SCI injury. In addition, we also found that shikonin could suppress the apoptosis and expression of caspase-3 protein in SCI model of rats. Conclusion: Our results demonstrated that shikonin induced the recovery of tissue repair and motor function via inactivation of HMGB1/TLR4/NF-κB signaling pathway in SCI model of rats. Meanwhile, shikonin regulated the inflammation response in SCI by suppressing the HMGB1/TLR4/NF-κB signaling pathway. The described mechanism sheds novel light on molecular signaling pathway in spinal cord injury and secondary injury including inflammatory response.


2018 ◽  
Vol 47 (2) ◽  
pp. 842-850 ◽  
Author(s):  
Bo Hu ◽  
Guangtao Xu ◽  
Xiaomin Zhang ◽  
Long Xu ◽  
Hong Zhou ◽  
...  

Background/Aims: Paeoniflorin (PF) is known to have anti-inflammatory and paregoric effects, but the mechanism underlying its analgesic effect remains unclear. The aim of this study was to clarify the effect of PF on Freund’s complete adjuvant (CFA)-induced inflammatory pain and explore the underlying molecular mechanism. Methods: An inflammatory pain model was established by intraplantar injection of CFA in C57BL/6J mice. After intrathecal injection of PF daily for 8 consecutive days, thermal and mechanical withdrawal thresholds, the levels of inflammatory factors TNF-α, IL-1β and IL-6, microglial activity, and the expression of Akt-NF-κB signaling pathway in the spinal cord tissue were detected by animal ethological test, cell culture, enzyme-linked immunosorbent assay, immunofluorescence histochemistry, and western blot. Results: PF inhibited the spinal microglial activation in the CFA-induced pain model. The production of proinflammatory cytokines was decreased in the central nervous system after PF treatment both in vivo and in vitro. PF further displayed a remarkable effect on inhibiting the activation of Akt-NF-κB signaling pathway in vivo and in vitro. Conclusion: These results suggest that PF is a potential therapeutic agent for inflammatory pain and merits further investigation.


2020 ◽  
Vol 11 ◽  
Author(s):  
Fei Gao ◽  
Yun Zhang ◽  
Zhizhou Yang ◽  
Mengmeng Wang ◽  
Zhiyi Zhou ◽  
...  

Arctigenin (ATG), a major bioactive substance of Fructus Arctii, counters renal fibrosis; however, whether it protects against paraquat (PQ)-induced lung fibrosis remains unknown. The present study was to determine the effect of ATG on PQ-induced lung fibrosis in a mouse model and the underlying mechanism. Firstly, we found that ATG suppressed PQ-induced pulmonary fibrosis by blocking the epithelial-mesenchymal transition (EMT). ATG reduced the expressions of Vimentin and α-SMA (lung fibrosis markers) induced by PQ and restored the expressions of E-cadherin and Occludin (two epithelial markers) in vivo and in vitro. Besides, the Wnt3a/β-catenin signaling pathway was significantly activated in PQ induced pulmonary fibrosis. Further analysis showed that pretreatment of ATG profoundly abrogated PQ-induced EMT-like phenotypes and behaviors in A549 cells. The Wnt3a/β-catenin signaling pathway was repressed by ATG treatment. The overexpression of Wnt3a could weaken the therapeutic effect of ATG in A549 cells. These findings suggested that ATG could serve as a new therapeutic candidate to inhibit or even reverse EMT-like changes in alveolar type II cells during PQ-induced lung fibrosis, and unraveled that the Wnt3a/β-catenin pathway might be a mechanistic tool for ATG to control pulmonary fibrosis.


2020 ◽  
Vol 98 (3) ◽  
pp. 162-168 ◽  
Author(s):  
Yong-mei Jin ◽  
Xiang-ming Tao ◽  
Yi-ning Shi ◽  
Youjin Lu ◽  
Jin-yu Mei

Salvianolic acid B (Sal B) exerts strong antioxidant activity and eliminates the free radical effect. However, how it affects the antioxidant pathway is not very clear. The objective of this study was to investigate the underlying mechanism of Sal B in CCl4-induced acute liver injury, especially its effect on the Nrf2/HO-1 signaling pathway. For the in vivo experiment, an acute liver injury model was induced using CCl4 and treated with Sal B. For the in vitro experiment, an oxidative damage model was established followed by Sal B treatment. Serum biochemical indicators and reactive oxygen species activity were detected using corresponding kits. Oxidant/antioxidant status was determined based on the levels of malondialdehyde, glutathione, and superoxide dismutase. Nrf2 and HO-1 levels were analyzed by Western blotting and immunohistochemical staining. Sal B treatment improved liver histology, decreased the aminotransferase levels, and attenuated oxidative stress in the acute liver injury model. Nrf2 and HO-1 levels were increased both in vivo and in vitro. Sal B suppresses acute liver injury and Nrf2/HO-1 signaling plays a key role in this process.


Sign in / Sign up

Export Citation Format

Share Document