scholarly journals Prognostic signature of ovarian cancer based on 14 tumor microenvironment genes

2020 ◽  
Author(s):  
Xiazi Nie ◽  
Lina Song ◽  
Xiaohua Li ◽  
Yirong Wang ◽  
Bo Qu

Abstract Background Ovarian cancer is one of the lethal gynecological in women. Tumor microenvironment (TME) is emerging as a pivotal biomarker for patients’ therapeutic sensitivity and prognosis. In this study, we proposed to explore the prognostic role of TME-related genes in ovarian cancer. Methods The data of whole genome expression profiles and detailed clinicopathological information of three cohorts of ovarian cancer patients from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Univariate Cox regression analysis was used to screen TME-related genes with significantly prognostic value based on TCGA cohort. LASSO Cox regression analysis was adapted to the construction of prognostic model. Ovarian cancer cohorts from GEO were used as validation set for verifying the reliability of the prognostic model. Relative infiltrating proportion of 22 immune cells were estimated through CIBERSORT software. Results This study identified a total of 14 TME-related genes that finally incorporated into the prognostic model. The risk score that calculated through the prognostic model was proved as an independent prognostic signature in ovarian cancer. Nomogram that contains TNM stage and risk score could reliably predict the long-term overall survival probability. Additionally, risk score was significantly associated with the relative infiltrating proportion of several immune cells in ovarian cancer and mRNA levels of some immune checkpoint genes. Conclusions This study constructed a prognostic model for ovarian cancer, which was closely associated with the prognosis and immune status. This should provide novel clue for prognosis study in ovarian cancer.

2021 ◽  
Author(s):  
Jixiang Cao ◽  
Xi Chen ◽  
Guang Lu ◽  
Haowei Wang ◽  
Xinyu Zhang ◽  
...  

Abstract Background: Cholangiocarcinoma (CCA) is the most common malignancy of the biliary tract with a dismal prognosis. Increasing evidence suggests that tumor microenvironment (TME) is closely associated with cancer prognosis. However, the prognostic signature for CCA based on TME has not yet been reported. This study aimed to develop a TME-related prognostic signature for accurately predicting the prognosis of patients with CCA. Methods: Based on the TCGA database, we calculated the stromal and immune scores using the ESTIMATE algorithm to assess TME in stromal and immune cells derived from CCA. TME-related differentially expressed genes were identified, followed by functional enrichment analysis and PPI network analysis. Univariate Cox regression analysis, Lasso Cox regression model and multivariable Cox regression analysis were performed to identify and construct the TME-related prognostic gene signature. Gene Set Enrichment Analyses (GSEA) was performed to further investigate the potential molecular mechanisms. The correlations between the risk scores and tumor infiltration immune cells were analyzed using Tumor Immune Estimation Resource (TIMER) database. Results: A total of 784 TME-related differentially expressed genes (DEGs) were identified, which were mainly enriched in immune-related processes and pathways. Among these TME-related DEGs, A novel two‑gene signature (including GAD1 and KLRB1) was constructed for CCA prognosis prediction. The AUC of the prognostic model for predicting the survival of patients at 1-, 2-, and 3- years was 0.811, 0.772, and 0.844, respectively. Cox regression analysis showed that the two‑gene signature was an independent prognostic factor. Based on the risk scores of the prognostic model, CCA patients were divided into high- and low-risk groups, and patients with high-risk score had shorter survival time than those with low-risk score. Furthermore, we found that the risk scores were negatively correlated with TME-scores and the number of several tumor infiltration immune cells, including B cells and CD4+ T cells. Conclusion: Our study established a novel TME-related gene signature to predict the prognosis of patients with CCA. This might provide a new understanding of the potential relationship between TME and CCA prognosis, and serve as a prognosis stratification tool for guiding personalized treatment of CCA patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Ouyang ◽  
Kaide Xia ◽  
Xue Yang ◽  
Shichao Zhang ◽  
Li Wang ◽  
...  

AbstractAlternative splicing (AS) events associated with oncogenic processes present anomalous perturbations in many cancers, including ovarian carcinoma. There are no reliable features to predict survival outcomes for ovarian cancer patients. In this study, comprehensive profiling of AS events was conducted by integrating AS data and clinical information of ovarian serous cystadenocarcinoma (OV). Survival-related AS events were identified by Univariate Cox regression analysis. Then, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis were used to construct the prognostic signatures within each AS type. Furthermore, we established a splicing-related network to reveal the potential regulatory mechanisms between splicing factors and candidate AS events. A total of 730 AS events were identified as survival-associated splicing events, and the final prognostic signature based on all seven types of AS events could serve as an independent prognostic indicator and had powerful efficiency in distinguishing patient outcomes. In addition, survival-related AS events might be involved in tumor-related pathways including base excision repair and pyrimidine metabolism pathways, and some splicing factors might be correlated with prognosis-related AS events, including SPEN, SF3B5, RNPC3, LUC7L3, SRSF11 and PRPF38B. Our study constructs an independent prognostic signature for predicting ovarian cancer patients’ survival outcome and contributes to elucidating the underlying mechanism of AS in tumor development.


Author(s):  
Yongmei Wang ◽  
Guimin Zhang ◽  
Ruixian Wang

Background: This study aims to explore the prognostic values of CT83 and CT83-related genes in lung adenocarcinoma (LUAD). Methods: We downloaded the mRNA profiles of 513 LUAD patients (RNA sequencing data) and 246 NSCLC patients (Affymetrix Human Genome U133 Plus 2.0 Array) from TCGA and GEO databases. According to the median expression of CT83, the TCGA samples were divided into high and low expression groups, and differential expression analysis between them was performed. Functional enrichment analysis of differential expression genes (DEGs) was conducted. Univariate Cox regression analysis and LASSO Cox regression analysis were performed to screen the optimal prognostic DEGs. Then we established the prognostic model. A Nomogram model was constructed to predict the overall survival (OS) probability of LUAD patients. Results: CT83 expression was significantly correlated to the prognosis of LUAD patients. A total of 59 DEGs were identified, and a predictive model was constructed based on six optimal CT83-related DEGs, including CPS1, RHOV, TNNT1, FAM83A, IGF2BP1, and GRIN2A, could effectively predict the prognosis of LUAD patients. The nomogram could reliably predict the OS of LUAD patients. Moreover, the six important immune checkpoints (CTLA4, PD1, IDO1, TDO2, LAG3, and TIGIT) were closely correlated with the Risk Score, which was also differentially expressed between the LUAD samples with high and low-Risk Scores, suggesting that the poor prognosis of LUAD patients with high-Risk Score might be due to the immunosuppressive microenvironments. Conclusion: A prognostic model based on six optimal CT83 related genes could effectively predict the prognosis of LUAD patients.


2020 ◽  
Author(s):  
Xiaohong - Liu ◽  
Qian - Xu ◽  
Zi-Jing - Li ◽  
Bin - Xiong

Abstract BackgroundMetabolic reprogramming is an important hallmark in the development of malignancies. Numerous metabolic genes have been demonstrated to participate in the progression of hepatocellular carcinoma (HCC). However, the prognostic significance of the metabolic genes in HCC remains elusive. MethodsWe downloaded the gene expression profiles and clinical information from the GEO, TCGA and ICGC databases. The differently expressed metabolic genes were identified by using Limma R package. Univariate Cox regression analysis and LASSO (Least absolute shrinkage and selection operator) Cox regression analysis were utilized to uncover the prognostic significance of metabolic genes. A metabolism-related prognostic model was constructed in TCGA cohort and validated in ICGC cohort. Furthermore, we constructed a nomogram to improve the accuracy of the prognostic model by using the multivariate Cox regression analysis.ResultsThe high-risk score predicted poor prognosis for HCC patients in the TCGA cohort, as confirmed in the ICGC cohort (P < 0.001). And in the multivariate Cox regression analysis, we observed that risk score could act as an independent prognostic factor for the TCGA cohort (HR (hazard ratio) 3.635, 95% CI (confidence interval)2.382-5.549) and the ICGC cohort (HR1.905, 95%CI 1.328-2.731). In addition, we constructed a nomogram for clinical use, which suggested a better prognostic model than risk score.ConclusionsOur study identified several metabolic genes with important prognostic value for HCC. These metabolic genes can influence the progression of HCC by regulating tumor biology and can also provide metabolic targets for the precise treatment of HCC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Pu Wu ◽  
Jinyuan Shi ◽  
Wei Sun ◽  
Hao Zhang

Abstract Background Pyroptosis is a form of programmed cell death triggered by inflammasomes. However, the roles of pyroptosis-related genes in thyroid cancer (THCA) remain still unclear. Objective This study aimed to construct a pyroptosis-related signature that could effectively predict THCA prognosis and survival. Methods A LASSO Cox regression analysis was performed to build a prognostic model based on the expression profile of each pyroptosis-related gene. The predictive value of the prognostic model was validated in the internal cohort. Results A pyroptosis-related signature consisting of four genes was constructed to predict THCA prognosis and all patients were classified into high- and low-risk groups. Patients with a high-risk score had a poorer overall survival (OS) than those in the low-risk group. The area under the curve (AUC) of the receiver operator characteristic (ROC) curves assessed and verified the predictive performance of this signature. Multivariate analysis showed the risk score was an independent prognostic factor. Tumor immune cell infiltration and immune status were significantly higher in low-risk groups, which indicated a better response to immune checkpoint inhibitors (ICIs). Of the four pyroptosis-related genes in the prognostic signature, qRT-PCR detected three of them with significantly differential expression in THCA tissues. Conclusion In summary, our pyroptosis-related risk signature may have an effective predictive and prognostic capability in THCA. Our results provide a potential foundation for future studies of the relationship between pyroptosis and the immunotherapy response.


2020 ◽  
Author(s):  
Guangtao Sun ◽  
Kejian Sun ◽  
Chao Shen

Abstract Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality in the world. Human nuclear receptors (NRs) have been identified to closely related to various cancer. However, the prognostic significance of NRs on HCC patients has not been studied in detail.Method: We downloaded the mRNA profiles and clinical information of 371 HCC patients from TCGA database and analyzed the expression of 48 NRs. The consensus clustering analysis with the mRNA levels of 48 NRs was performed by the "ConsensusClusterPlus". The Univariate cox regression analysis was performed to predict the prognostic significance of NRs on HCC. The risk score was calculated by the prognostic model constructed based on eight optimal NRs which were selected. Then Multivariate Cox regression analysis was performed to determine whether the risk score is an independent prognostic signature. Finally, the nomogram based on multiple independent prognostic factors including risk score and TNM Stage was used to predict the long-term survival of HCC patients.Results: NRs could effectively separate HCC samples with different prognosis. The prognostic model constructed based on the eight optimal NRs (NR1H3, ESR1, NR1I2, NR2C1, NR6A1, PPARD, PPARG and VDR) could effectively predict the prognosis of HCC patients as an independent prognostic signature. Moreover, the nomogram was constructed based on multiple independent prognostic factors including risk score and TNM Stage and could better predict the long-term survival for 3- and 5-year of HCC patients.Conclusion: Our results provided novel evidences that NRs could act as the potential prognostic signatures for HCC patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhipeng Zhu ◽  
Mengyu Song ◽  
Wenhao Li ◽  
Mengying Li ◽  
Sihan Chen ◽  
...  

Hepatocellular carcinoma is a common malignant tumor with poor prognosis, poor treatment effect, and lack of effective biomarkers. In this study, bioinformatics analysis of immune-related genes of hepatocellular carcinoma was used to construct a multi-gene combined marker that can predict the prognosis of patients. The RNA expression data of hepatocellular carcinoma were downloaded from The Cancer Genome Atlas (TCGA) database, and immune-related genes were obtained from the IMMPORT database. Differential analysis was performed by Wilcox test to obtain differentially expressed genes. Univariate Cox regression analysis, lasso regression analysis and multivariate Cox regression analysis were performed to establish a prognostic model of immune genes, a total of 5 genes (HDAC1, BIRC5, SPP1, STC2, NR6A1) were identified to construct the models. The expression levels of 5 genes in HCC tissues were significantly different from those in paracancerous tissues. The Kaplan-Meier survival curve showed that the risk score calculated according to the prognostic model was significantly related to the overall survival (OS) of HCC. The receiver operating characteristic (ROC) curve confirmed that the prognostic model had high accuracy. Independent prognostic analysis was performed to prove that the risk value can be used as an independent prognostic factor. Then, the gene expression data of hepatocellular carcinoma in the ICGC database was used as a validation data set for the verification of the above steps. In addition, we used the CIBERSORT software and TIMER database to conduct immune infiltration research, and the results showed that the five genes of the model and the risk score have a certain correlation with the content of immune cells. Moreover, through Gene Set Enrichment Analysis (GSEA) and the construction of protein interaction networks, we found that the p53-mediated signal transduction pathway is a potentially important signal pathway for hepatocellular carcinoma and is positively regulated by certain genes in the prognostic model. In conclusion, this study provides potential targets for predicting the prognosis and treatment of hepatocellular carcinoma patients, and also provides new ideas about the correlation between immune genes and potential pathways of hepatocellular carcinoma.


2021 ◽  
Author(s):  
Weiwei Jia ◽  
Pengjia Li ◽  
Mingxia Ma ◽  
Xiaochen Niu ◽  
Lina Bai ◽  
...  

Abstract KIRC is the malignant tumor with the highest incidence and poor prognosis in renal cell carcinoma. We want to explore the possible mechanisms of KIRC and effective prognostic-related biomarkers. The sequencing information of 3 types of RNA (mRNA, lncRNA and miRNA) in 539 cases of KIRC tissues and 72 cases of normal tissues is obtained from the TCGA database. Methods such as univariate Cox regression analysis, lasso regression screening, and multivariate Cox regression analysis were used to construct a prognostic model based on the CeRNA network. There are 3074 mRNAs, 359 lncRNAs and 132 miRNAs differentially expressed that have been identified through differential analysis. A complete mRNA-miRNA-lncRNA (SIX1-hsa-miR-200b-3p-MALAT1) network was obtained based on the CeRNA network. The CIBERSORT algorithm was used to analyze the degree of infiltration of 22 kinds of immune cells from each sample of KIRC. Construction of a prognostic model based on tumor-infiltrating immune cells, 2 immune cells (Mast cells resting, T cells follicular helper) were identified by constructing a prognostic model. There was a negative correlation between lncRNA MALAT1 and Mast cells resting (R= -0.27, P < 0.001); while there was a positive correlation between lncRNA MALAT1 and T cells follicular helper (R = 0.23, P < 0.001).


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Junyu Huo ◽  
Ge Guan ◽  
Jinzhen Cai ◽  
Liqun Wu

Abstract Background Stromal cells in tumor microenvironment could promote immune escape through a variety of mechanisms, but there are lacking research in the field of gastric cancer (GC). Methods We identified differential expressed immune-related genes (DEIRGs) between the high- and low-stromal cell abundance GC samples in The Cancer Genome Atlas and GSE84437 datasets. A risk score was constructed basing on univariate cox regression analysis, LASSO regression analysis, and multivariate cox regression analysis in the training cohort (n=772). The median value of the risk score was used to classify patients into groups with high and low risk. We conducted external validation of the prognostic signature in four independent cohorts (GSE26253, n=432; GSE62254, n=300; GSE15459, n=191; GSE26901, n=109) from the Gene Expression Omnibus (GEO) database. The immune cell infiltration was quantified by the CIBERSORT method. Results The risk score contained 6 genes (AKT3, APOD, FAM19A5, LTBP3, NOV, and NOX4) showed good performance in predicting 5-year overall survival (OS) rate and 5-year recurrence-free survival (RFS) rate of GC patients. The risk death and recurrence of GC patients growing with the increasing risk score. The patients were clustered into three subtypes according to the infiltration of 22 kinds of immune cells quantified by the CIBERSORT method. The proportion of cluster A with the worst prognosis in the high-risk group was significantly higher than that in the low-risk group; the risk score of cluster C subtype with the best prognosis was significantly lower than that of the other two subtypes. Conclusion This study established and validated a robust prognostic model for gastric cancer by integrated analysis 1804 samples of six centers, and its mechanism was explored in combination with immune cell infiltration characterization.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10628
Author(s):  
Juan Chen ◽  
Rui Zhou

Background Lung adenocarcinoma (LUAD) is the most common histological type of lung cancers, which is the primary cause of cancer‐related mortality worldwide. Growing evidence has suggested that tumor microenvironment (TME) plays a pivotal role in tumorigenesis and progression. Hence, we investigate the correlation of TME related genes with LUAD prognosis. Method The information of LUAD gene expression data was obtained from The Cancer Genome Atlas (TCGA). According to their immune/stromal scores calculated by the ESTIMATE algorithm, differentially expressed genes (DEGs) were identified. Then, we performed univariate Cox regression analysis on DEGs to obtain genes that are apparently bound up with LUAD survival (SurGenes). Functional annotation and protein-protein interaction (PPI) was also conducted on SurGenes. By validating the SurGenes with data sets of lung cancer from the Gene Expression Omnibus (GEO), 106 TME related SurGenes were generated. Further, intersection analysis was executed between the 106 TME related SurGenes and hub genes from PPI network, PTPRC and CD19 were obtained. Gene Set Enrichment Analysis and CIBERSORT analysis were performed on PTPRC and CD19. Based on the TCGA LUAD dataset, we conducted factor analysis and Step-wise multivariate Cox regression analysis for 106 TME related SurGenes to construct the prognostic model for LUAD survival prediction. The LUAD dataset in GEO (GSE68465) was used as the testing dataset to confirm the prognostic model. Multivariate Cox regression analysis was used between risk score from the prognostic model and clinical parameters. Result A total of 106 TME related genes were collected in our research totally, which were markedly correlated with the overall survival (OS) of LUAD patient. Bioinformatics analysis suggest them mainly concentrated on immune response, cell adhesion, and extracellular matrix. More importantly, among 106 TME related SurGenes, PTPRC and CD19 were highly interconnected nodes among PPI network and correlated with immune activity, exhibiting significant prognostic potential. The prognostic model was a weighted linear combination of the 106 genes, by which the low-OS LUAD samples could be separated from the high-OS samples with success. This model was also able to rebustly predict the situation of survival (training set: p-value < 0.0001, area under the curve (AUC) = 0.649; testing set: p-value = 0.0009, AUC = 0.617). By combining with clinical parameters, the prognostic model was optimized. The AUC achieved 0.716 for 3 year and 0.699 for 5 year. Conclusion A series of TME-related prognostic genes were acquired in this research, which could reflect immune disorders within TME, and PTPRC and CD19 show the potential to be an indicator for LUAD prognosis and tumor microenvironment modulation. The prognostic model constructed base on those prognostic genes presented a high predictive ability, and may have clinical implications in the overall survival prediction of LUAD.


Sign in / Sign up

Export Citation Format

Share Document