scholarly journals Broad Spectrum Polyphenol Supplementation from Tart Cherry Extract on Markers of Recovery from Intense Resistance Exercise

2020 ◽  
Author(s):  
David R. Hooper ◽  
Terrance Orange ◽  
Meagan T. Gruber ◽  
Ashley A. Darakjian ◽  
Kara L. Conway ◽  
...  

Abstract Background: Tart cherry supplementation has been shown to enhance recovery from strenuous exercise due to its antioxidant properties. The majority of these studies used tart cherry juice, with a significant calorie content. The primary purpose of this study was to assess whether powdered tart cherry extract with minimal calorie content reduces oxidative stress and enhances recovery following intense resistance exercise. Methods: Thirteen men (mean age: 26.2±5.3 years; height: 184.3±8.2 cm; weight: 92.9±15.6 kg) performed a demanding resistance exercise protocol consisting of 6 sets of 10 repetitions of barbell back squat with 80% 1RM. The protocol was performed once following 7 days of 500 mg of tart cherry extract and once following placebo. Serum protein carbonyl (PC) content, creatine kinase activity (CK) and creatine kinase myocardial band content (CK-MB) were used to assess oxidative stress, skeletal and cardiac muscle damage respectively. Muscle soreness was assessed by visual analog scale. Physical performance was measured by countermovement jump power and handgrip dynamometer strength. Results: There was a significant increase in PC in the placebo (PL) condition when compared to the Tart Cherry (TC) condition at IP (PL: 0.4±0.3 vs. TC: -0.4±0.2 nmol∙mg-1; p<0.001), 1 hr (PL: 0.3±0.3 vs. TC: -0.7±0.3 nmol∙mg-1; p<0.001) and 24 hr (PL: 0.1±0.4 vs. TC: -0.3±0.5 nmol∙mg-1; p=0.010). There was a significant increase in CK activity in PL when compared to the TC at IP (PL: 491.1±280 vs. TC: 296.3±178 U∙L-1; p=0.008) and 3 hr (PL: -87±123 vs. TC: 43.1±105.3 U∙L-1; p=0.006). There was a significant (p=0.003) increase in CKMB concentration in PL when compared to the TC (PL: 21.6±12.4 vs. TC: -0.3±11.8 ng∙ml-1; p=0.006) at 1 hr post. There was a significant increase in handgrip strength in TC when compared to PL (PL: -2±5.1 vs. TC: 1.7±3 kg; p=0.017) at 24 hours post.Conclusions: This study demonstrated that tart cherry extract reduced oxidative stress and markers of muscle and cardiac damage following intense resistance exercise. This occurred along with a prevention of the decrease in strength seen following the intense exercise protocol. These benefits were seen with minimal energy intake.

2020 ◽  
Author(s):  
David R. Hooper ◽  
Terrance Orange ◽  
Meagan T. Gruber ◽  
Ashley A. Darakjian ◽  
Kara L. Conway ◽  
...  

Abstract Background: Tart cherry supplementation has been shown to enhance recovery from strenuous exercise due to its antioxidant properties. The majority of these studies used tart cherry juice, with a significant calorie content. The primary purpose of this study was to assess whether powdered tart cherry extract with minimal calorie content reduces oxidative stress and enhances recovery following intense resistance exercise. Methods: Thirteen men (mean age: 26.2±5.3 years; height: 184.3±8.2 cm; weight: 92.9±15.6 kg) performed a demanding resistance exercise protocol consisting of 6 sets of 10 repetitions of barbell back squat with 80% 1RM. The protocol was performed once following 7 days of 500 mg of tart cherry extract and once following placebo. Serum protein carbonyl (PC) content, creatine kinase activity (CK) and creatine kinase myocardial band content (CK-MB) were used to assess oxidative stress, skeletal and cardiac muscle damage respectively. Muscle soreness was assessed by visual analog scale. Physical performance was measured by countermovement jump power and handgrip dynamometer strength. Results: There was a significant increase in PC in the placebo (PL) condition when compared to the Tart Cherry (TC) condition at IP (PL: 0.4±0.3 vs. TC: -0.4±0.2 nmol∙mg-1; p<0.001), 1 hr (PL: 0.3±0.3 vs. TC: -0.7±0.3 nmol∙mg-1; p<0.001) and 24 hr (PL: 0.1±0.4 vs. TC: -0.3±0.5 nmol∙mg-1; p=0.010). There was a significant increase in CK activity in PL when compared to the TC at IP (PL: 491.1±280 vs. TC: 296.3±178 U∙L-1; p=0.008) and 3 hr (PL: -87±123 vs. TC: 43.1±105.3 U∙L-1; p=0.006). There was a significant (p=0.003) increase in CKMB concentration in PL when compared to the TC (PL: 21.6±12.4 vs. TC: -0.3±11.8 ng∙ml-1; p=0.006) at 1 hr post. There was a significant increase in handgrip strength in TC when compared to PL (PL: -2±5.1 vs. TC: 1.7±3 kg; p=0.017) at 24 hours post.Conclusions: This study demonstrated that tart cherry extract reduced oxidative stress and markers of muscle and cardiac damage following intense resistance exercise. This occurred along with a prevention of the decrease in strength seen following the intense exercise protocol. These benefits were seen with minimal energy intake.


Author(s):  
D. R. Hooper ◽  
T. Orange ◽  
M. T. Gruber ◽  
A. A. Darakjian ◽  
K. L. Conway ◽  
...  

Abstract Background Tart cherry supplementation has been shown to enhance recovery from strenuous exercise due to its antioxidant properties. The majority of these studies used tart cherry juice, with a significant calorie content. The primary purpose of this study was to assess whether powdered tart cherry extract with minimal calorie content reduces oxidative stress and enhances recovery following intense resistance exercise. Methods Thirteen men (mean age: 26.2 ± 5.3 years; height: 184.3 ± 8.2 cm; weight: 92.9 ± 15.6 kg) performed a demanding resistance exercise protocol consisting of 6 sets of 10 repetitions of barbell back squat with 80% 1RM. The protocol was performed once following 7 days of 500 mg of tart cherry extract and once following placebo. Serum protein carbonyl (PC) content, creatine kinase activity (CK) and creatine kinase myocardial band content (CK-MB) were used to assess oxidative stress, skeletal and cardiac muscle damage respectively. Muscle soreness was assessed by visual analog scale. Physical performance was measured by countermovement jump power and handgrip dynamometer strength. Results There was a significant increase in PC in the placebo (PL) condition when compared to the Tart Cherry (TC) condition at Immediate Post (IP) (PL: 0.4 ± 0.3 vs. TC: − 0.4 ± 0.2 nmol∙mg− 1; p < 0.001), 1 h (PL: 0.3 ± 0.3 vs. TC: − 0.7 ± 0.3 nmol∙mg− 1; p < 0.001) and 24 h (PL: 0.1 ± 0.4 vs. TC: − 0.3 ± 0.5 nmol∙mg− 1; p = 0.010). There was a significant increase in CK activity in PL when compared to the TC at IP (PL: 491.1 ± 280 vs. TC: 296.3 ± 178 U∙L− 1; p = 0.008) and 3 h (PL: − 87 ± 123 vs. TC: 43.1 ± 105.3 U∙L− 1; p = 0.006). There was a significant (p = 0.003) increase in CKMB concentration in PL when compared to the TC (PL: 21.6 ± 12.4 vs. TC: − 0.3 ± 11.8 ng∙ml− 1; p = 0.006) at 1 h post. There was a significant increase in handgrip strength in TC when compared to PL (PL: − 2 ± 5.1 vs. TC: 1.7 ± 3 kg; p = 0.017) at 24 h post. Conclusions This study demonstrated that tart cherry extract reduced oxidative stress and markers of muscle and cardiac damage following intense resistance exercise. This occurred along with a prevention of the decrease in handgrip strength seen following the intense exercise protocol, indicating a potential reduction in central fatigue. These benefits were seen with minimal energy intake.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao-Chen Bao ◽  
Quan Shen ◽  
Yi-Qun Fang ◽  
Jian-guo Wu

Objective: The objective of this study was to explore whether a single deep helium-oxygen (heliox) dive affects physiological function.Methods: A total of 40 male divers performed an open-water heliox dive to 80 m of seawater (msw). The total diving time was 280 min, and the breathing helium-oxygen time was 20 min. Before and after the dive, blood and saliva samples were collected, and blood cell counts, cardiac damage, oxidative stress, vascular endothelial activation, and hormonal biomarkers were assayed.Results: An 80 msw heliox dive induced a significant increase in the percentage of granulocytes (GR %), whereas the percentage of lymphocytes (LYM %), percentage of intermediate cells (MID %), red blood cell number (RBC), hematocrit (hCT), and platelets (PLT) decreased. During the dive, concentrations of creatine kinase (CK), a myocardial-specific isoenzyme of creatine kinase (CK-MB) in serum and amylase alpha 1 (AMY1), and testosterone levels in saliva increased, in contrast, IgA levels in saliva decreased. Diving caused a significant increase in serum glutathione (GSH) levels and reduced vascular cell adhesion molecule-1 (VCAM-1) levels but had no effect on malondialdehyde (MDA) and endothelin-1 (ET-1) levels.Conclusion: A single 80 msw heliox dive activates the endothelium, causes skeletal-muscle damage, and induces oxidative stress and physiological stress responses, as reflected in changes in biomarker concentrations.


1995 ◽  
Vol 79 (4) ◽  
pp. 1310-1315 ◽  
Author(s):  
W. J. Kraemer ◽  
B. A. Aguilera ◽  
M. Terada ◽  
R. U. Newton ◽  
J. M. Lynch ◽  
...  

The purpose of this study was to examine the effects of a heavy-resistance exercise protocol known to dramatically elevate immunoreactive growth hormone (GH) on circulating insulin-like growth factor I (IGF-I) after the exercise stimulus. Seven men (23.1 +/- 2.4 yr) volunteered to participate in this study. Each subject was asked to perform an eight-station heavy-resistance exercise protocol consisting of 3 sets of 10 repetition maximum resistances with 1-min rest between sets and exercises followed by a recovery day. In addition, a control day followed a nonexercise day to provide baseline data. Pre- and postexercise (0, 15, and 30 min) blood samples were obtained and analyzed for lactate, creatinine kinase, GH, and IGF-I. Postexercise values for lactate and GH were significantly (P < 0.05) elevated above preexercise and resting baseline values. The highest mean GH concentration after the heavy-resistance exercise protocol was 23.8 +/- 11.8 micrograms/l, observed at the immediate postexercise time point. Significant increases in creatine kinase were observed after the exercise protocol and during the recovery day. No significant relationships were observed between creatine kinase and IGF-I concentrations. No significant changes in serum IGF-I concentrations were observed with acute exercise or between the recovery and control days. Thus, these data demonstrate that a high-intensity bout of heavy-resistance exercise that increases circulating GH did not appear to affect IGF-I concentrations over a 24-h recovery period in recreationally strength-trained and healthy young men.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1482
Author(s):  
Shasika Jayarathne ◽  
Latha Ramalingam ◽  
Hunter Edwards ◽  
Siva A. Vanapalli ◽  
Naima Moustaid-Moussa

Aging and healthspan are determined by both environmental and genetic factors. The insulin/insulin-like growth factor-1(IGF-1) pathway is a key mediator of aging in Caenorhabditis elegans and mammals. Specifically, DAF-2 signaling, an ortholog of human IGF, controls DAF-16/FOXO transcription factor, a master regulator of metabolism and longevity. Moreover, mitochondrial dysfunction and oxidative stress are both linked to aging. We propose that daily supplementation of tart cherry extract (TCE), rich in anthocyanins with antioxidant properties may exert dual benefits for mitochondrial function and oxidative stress, resulting in beneficial effects on aging in C. elegans. We found that TCE supplementation at 6 μg or 12 μg/mL, increased (p < 0.05) the mean lifespan of wild type N2 worms, respectively, when compared to untreated control worms. Consistent with these findings, TCE upregulated (p < 0.05) expression of longevity-related genes such as daf-16 and aak-2 (but not daf-2 or akt-1 genes) and genes related to oxidative stress such as sod-2. Further, we showed that TCE supplementation increased spare respiration in N2 worms. However, TCE did not change the mean lifespan of daf-16 and aak-2 mutant worms. In conclusion, our findings indicate that TCE confers healthspan benefits in C. elegans through enhanced mitochondrial function and reduced oxidative stress, mainly via the DAF-16 pathway.


2000 ◽  
Vol 25 (4) ◽  
pp. 274-287 ◽  
Author(s):  
Peter M. Tiidus

Information suggests that there may be gender-based differences in skeletal muscle responses to damaging exercise. Evidence demonstrates that estrogen has strong antioxidant properties and may be an important factor in maintaining postexercise membrane stability and limiting creatine kinase (CK) leakage from damaged muscle in female animals. Research demonstrates effects of estrogen and possible gender differences in other morphological and biochemical indices of postexercise muscle damage and leukocyte invasion. Nevertheless, there are conflicting findings suggesting that in some in vivo exercise models, estrogen administration has limited ability to affect exercise-induced oxidative stress and muscle damage and max cause loss of tissue vitamin C. Gender differences appear to exist in tissue levels of other important antioxidants such as vitamin E and glutathione. More research is needed to fully define the potential for estrogen to influence postexercise muscle damage and the inflammatory response and to determine the mechanisms by which it may operate. Key words: exercise, neutrophils, creatine kinase, vitamin E, vitamin C


Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 347 ◽  
Author(s):  
Jing-Jing Xing ◽  
Jin-Gang Hou ◽  
Ying Liu ◽  
Ruo-Bing Zhang ◽  
Shuang Jiang ◽  
...  

Background: Although kidney injury caused by cisplatin has attracted much attention, cisplatin-induced cardiotoxicity is elusive. Our previous studies have confirmed that saponins (ginsenosides) from Panax quinquefolius can effectively reduce acute renal injuries. Our current study aimed to identify the potential effects of saponins from leaves of P. quinquefolius (PQS) on cisplatin-evoked cardiotoxicity. Methods: Mice were intragastrically with PQS at the doses of 125 and 250 mg/kg daily for 15 days. The mice in cisplatin group and PQS + cisplatin groups received four times intraperitoneal injections of cisplatin (3 mg/kg) two days at a time from the 7th day, respectively. All mice were killed at 48 h following final cisplatin injection. Body weights, blood and organic samples were collected immediately. Results: Our results showed that cisplatin-challenged mice experienced a remarkable cardiac damage with obvious histopathological changes and elevation of lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase isoenzyme MB (CK-MB) and cardiac troponin T (cTnT) concentrations and viabilities in serum. Cisplatin also impaired antioxidative defense system in heart tissues manifested by a remarkable reduction in reduced glutathione (GSH) content and superoxide dismutase (SOD) activity, demonstrating the overproduction of reactive oxygen species (ROS) and oxidative stress. Interestingly, PQS (125 and 250 mg/kg) can attenuate cisplatin-evoked changes in the above-mentioned parameters. Additionally, PQS administration significantly alleviated the oxidation resulted from inflammatory responses and apoptosis in cardiac tissues via inhibition of overexpressions of TNF-α, IL-1β, Bax, and Bad as well as the caspase family members like caspase-3, and 8, respectively. Conclusion: Findings from our present research clearly indicated that PQS exerted significant effects on cisplatin-induced cardiotoxicity in part by inhibition of the NF-κB activity and regulation of PI3K/Akt/apoptosis mediated signaling pathways.


Author(s):  
Tayyaba Afsar ◽  
Suhail Razak ◽  
Ali Almajwal ◽  
Maria Shabbir ◽  
Muhammad Rashid Khan

Abstract Background Increase oxidative trauma is the main cause behind Cisplatin (CP) induced cardiotoxicity which restricts its clinical application as anti-neoplastic prescription. Acacia hydaspica is a natural shrub with diverse bioactivities. Acacia hydaspica ethyl acetate extract (AHE) ameliorated drug-induced cardiotoxicity in animals with anti-oxidative mechanisms. Current study aimed to evaluate the protective potential of A. hydaspica against cisplatin-induced myocardial injury. Methods Rats were indiscriminately distributed into six groups (n = 6). Group 1: control; Groups 2: Injected with CP (7.5 mg/kg bw, i.p, single dose) on day 16; Group 3: Treated for 21 days with AHE (400 mg/kg b.w, oral); Group 4: Received CP injection on day 16 and treated with AHE for 5 days post injection; Group 5: Received AHE (400 mg/kg b.w/day, p.o.) for 21 days and CP (7.5 mg/kg b.w., i.p.) on day 16; Group 6: Treated with silymarin (100 mg/kg b.w., p.o.) after 1 day interval for 21 days and CP injection (7.5 mg/kg b.w., i.p.) on day 16. On 22nd day, the animals were sacrificed and their heart tissues were removed. Cisplatin induced cardiac toxicity and the influence of AHE were evaluated by examination of serum cardiac function markers, cardiac tissue antioxidant enzymes, oxidative stress markers and histology. Results CP inoculation considerably altered cardiac function biomarkers in serum and diminished the antioxidant enzymes levels, while increased oxidative stress biomarkers in cardiac tissues AHE treatment attenuated CP-induced deteriorations in creatine kinase (CK), Creatine kinase isoenzymes MB (CK-MB), cardiac Troponin I (cTNI) and lactate dehydrogenase (LDH) levels and ameliorated cardiac oxidative stress markers as evidenced by decreasing lipid peroxidation, H2O2 and NO content along with augmentation in phase I and phase II antioxidant enzymes. Additionally, CP inoculation also induced morphological alterations which were ameliorated by AHE. In pretreatment group more significant protection was observed compared to post-treatment group indicating preventive potential of AHE. The protective potency of AHE was comparable to silymarin. Conclusion Results demonstrate that AHE attenuated CP induce cardiotoxicity. The polyphenolic metabolites and antioxidant properties of AHE might be responsible for its protective influence.


2016 ◽  
Vol 41 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Val Chan ◽  
Rob Duffield ◽  
Mark Watsford

This study investigated the effects of wearing compression garments during and 24 h following a 4-h exercise protocol simulating manual-labour tasks. Ten physically trained male participants, familiar with labouring activities, undertook 4 h of work tasks characteristic of industrial workplaces. Participants completed 2 testing sessions, separated by at least 1 week. In the experimental condition, participants wore a full-length compression top and compression shorts during the exercise protocol and overnight recovery, with normal work clothes worn in the control condition. Testing for serum creatine kinase and C-reactive protein, handgrip strength, knee flexion and extension torque, muscle stiffness, perceived muscle soreness and fatigue as well as heart rate and rating of perceived exertion (RPE) responses to 4-min cycling were performed before, following, and 24 h after exercise. Creatine kinase, muscle soreness, and rating of perceived fatigue increased following the exercise protocol (p < 0.05) as did RPE to a standardised cycling warm-up bout. Conversely, no postexercise changes were observed in C-reactive protein, handgrip strength, peak knee flexion torque, or stiffness measures (p > 0.05). Knee extension torque was significantly higher in the control condition at 24 h postexercise (3.1% ± 5.4% change; compression: 2.2% ± 11.1% change), although no other variables were different between conditions at any time. However, compression demonstrated a moderate–large effect (d > 0.60) to reduce perceived muscle soreness, fatigue, and RPE from standardised warm-up at 24 h postexercise. The current findings suggest that compression may assist in perceptual recovery from manual-labour exercise with implications for the ability to perform subsequent work bouts.


Sign in / Sign up

Export Citation Format

Share Document