scholarly journals Diversity and Dynamics of Microbial Ecosystem on Berry Surface During the Ripening of Ecolly Grape in Wuhai, China

Author(s):  
Yinting Ding ◽  
Ruteng Wei ◽  
Lin Wang ◽  
Chenlu Yang ◽  
Hua Wang ◽  
...  

Abstract The structural and functional diversity of the microbial ecosystem on the grape surface affect the health of berries and the flavor of wines, which are also changed by many factors such as climate, weather conditions, agronomic practices, and physiological development. To understand and explore the natural characteristics of grape surface microbial ecosystem during ripening, the species composition and dynamics of fungi and bacteria communities on the skin of Ecolly grape were determined by Illumina Novaseq platform sequencing. The results showed that 2146 fungal OTUs and 4175 bacterial OTUs were obtained, belonging to 4 fungal phyla and 20 bacterial phyla, and Shannon index indicated that the fungus community had the highest species diversity at the véraison stage and the bacteria community at the harvest stage. The four dominant fungal genera during grape ripening included Alternaria, Naganishia, Filobasidium, and Aureobasidium, which accounted for 82.8% of the total fungal community, and the dominant bacterial genera included Sphingomonas, Brevundimonas, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, and Massilia, which accounted for 77.9% of the total bacterial community. The species richness and diversity in the grape microbial ecosystem are constantly changing during the maturation stages, and there are complex interactions and correlations between related core microbial genera, which may have an important impact on the function and ecological role of the community. This study provides a basis for understanding the natural characteristics of the microbial ecosystem on the grape surface during the grape ripening, and the sustainable production concept of the microecology driving the viticulture management system.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 352-352
Author(s):  
Samat Amat ◽  
Devin B Holman ◽  
Kaycie Schmidt ◽  
kacie L L McCarthy ◽  
Sheri T T Dorsam ◽  
...  

Abstract A recent study reported the existence of a diverse microbiota in 5-to-7-month-old calf fetuses, suggesting that colonization of the bovine gut with so-called “pioneer” microbiota may begin during mid-gestation. In the present study, we investigated the microbiota in bovine fetuses at early gestation. Amniotic and allantoic fluids, and intestinal and placental (cotyledon) tissue samples harvested from fetuses (n = 33) on day 83 of gestation were processed for the assessment of fetal microbiota using 16S rRNA gene sequencing. The sequencing results revealed that a diverse and complex microbial community was present in allantoic and amniotic fluids, and fetal intestine and placenta on day 83 of gestation in beef cattle. Microbial community structure was significantly different between allantoic and amniotic fluid, and intestinal and placental microbiota (0.047 ≥ R2 ≥ 0.019, P ≤ 0.031). Allantoic fluid had a greater (P < 0.05) microbial richness (number of OTUs) (122 ± 10) compared to amniotic fluid (84 ± 6), intestine (63 ± 7) and placenta (66 ± 6). Microbial diversity (Shannon index) was similar for the intestinal and placental samples, and both were less diverse compared to the fetal fluid microbiota (P < 0.05). At the phylum level, 39 different archaeal and bacterial phyla were detected across all fetal samples, with Proteobacteria (55%), Firmicutes (16.2%), Actinobacteria (13.6%) and Bacteroidetes (5%) predominating. Among the 20 most relatively abundant bacterial genera, Acidovorax, Acinetobacter, Brucella, Corynebacterium, Enterococcus, Exiguobacterium and Stenotrophomonas differed by fetal sample type (P < 0.05). A total of 55 taxa were shared among the four different microbial communities. qPCR of bacteria in the intestine and placenta samples as well as scanning electron microscopy imaging of fetal fluids provided additional evidence for the presence of a microbiota in these samples. Overall, the results of this study indicate that colonization with pioneer microbiota may occur during early gestation in bovine fetuses.


Plant Disease ◽  
2005 ◽  
Vol 89 (11) ◽  
pp. 1151-1157 ◽  
Author(s):  
M. A. Mansfield ◽  
E. D. De Wolf ◽  
G. A. Kuldau

The deoxynivalenol (DON) content of maize silage was determined in samples collected at harvest and after ensiling in 2001 and 2002 from 30 to 40 Pennsylvania dairies. Information on cultural practices, hybrid maturity, planting, and harvest date was collected from each site. Site-specific weather data and a corn development model were used to estimate hybrid development at each site. Correlation analysis was used to assess the relationship between weather data, hybrid development, cultural practices and preharvest DON. Fermentation characteristics (moisture, pH, and so on) of ensiled samples were measured to study their relationship to postharvest DON contamination. No significant difference (P ≤ 0.05) was noted between the numbers of samples containing DON in 2001 and 2002, although concentration was higher in 2002 samples. A positive correlation was observed between DON concentration of harvest samples and daily average temperature, minimum temperature, and growing degree day during tasselling, silking, and milk stages. A negative correlation was observed between daily average precipitation at blister stage and DON concentration in harvest samples. Samples from no-till or minimum-till locations had higher DON concentrations than moldboard or mixed-till locations. Harvest samples had higher DON concentration than ensiled samples, suggesting that some physical, chemical, or microbiological changes, resulting from ensiling, may reduce DON in storage.


2020 ◽  
Author(s):  
Mary Hannah Swaney ◽  
Lindsay R Kalan

ABSTRACTThe human skin microbiome is a key player in human health, with diverse functions ranging from defense against pathogens to education of the immune system. Recent studies have begun unraveling the complex interactions within skin microbial communities, shedding light on the invaluable role that skin microorganisms have in maintaining a healthy skin barrier. While the Corynebacterium genus is a dominant taxon of the skin microbiome, relatively little is known how skin-associated Corynebacteria contribute to microbe-microbe and microbe-host interactions on the skin. Here, we performed a comparative genomics analysis of 71 Corynebacterium species from diverse ecosystems, which revealed functional differences between host- and environment-associated species. In particular, host-associated species were enriched for de novo biosynthesis of cobamides, which are a class of cofactor essential for metabolism in organisms across the tree of life but are produced by a limited number of prokaryotes. Because cobamides have been hypothesized to mediate community dynamics within microbial communities, we analyzed skin metagenomes for Corynebacterium cobamide producers, which revealed a positive correlation between cobamide producer abundance and microbiome diversity, a trait associated with skin health. We also provide the first metagenome-based assessment of cobamide biosynthesis and utilization in the skin microbiome, showing that both dominant and low abundant skin taxa encode for the de novo biosynthesis pathway and that cobamide-dependent enzymes are encoded by phylogenetically diverse taxa across the major bacterial phyla on the skin. Taken together, our results support a role for cobamide sharing within skin microbial communities, which we hypothesize mediates community dynamics.


2007 ◽  
Vol 8 (1) ◽  
pp. 66 ◽  
Author(s):  
Megan M. Kennelly ◽  
David M. Gadoury ◽  
Wayne F. Wilcox ◽  
Peter A. Magarey ◽  
Robert C. Seem

The complex interactions of Plasmopara viticola with environment and host make grapevine downy mildew an ideal candidate for disease forecasting. However, a forecasting model is only as good as the knowledge used to build it, and DMCast is no exception. We addressed some knowledge gaps concerning this disease: (i) initial timing and span of primary infection; (ii) survival of the lesions and sporangia; and (iii) critical period of fruit susceptibility. Experiments revealed that, though emerging shoots are susceptible earlier than previously thought, primary infection frequently occurs near the confluence of a specific host phenological stage and certain weather conditions. Primary infection also may trigger new epidemics later in the season than was traditionally hypothesized. Lesions declined with repeated sporulation cycles but, contrary to prior reports, not age alone. Sporangia died within 8 h on dry, warm days but retained high viability on cooler days. With controlled inoculations, we determined that in the New York climate, fruit of several cultivars (Chardonnay, Riesling, Concord, and Niagara) become resistant to infection by 2 to 3 weeks post-bloom. These studies have clarified several knowledge gaps and long-held assumptions that have direct implications for improving disease forecasting and disease management. Accepted for publication 14 March 2007. Published 26 July 2007.


2020 ◽  
Author(s):  
Chuan-yao Lin ◽  
Wan-chin Chen ◽  
Yang-fan sheng ◽  
Win-Mei Chen ◽  
Yi-Yun Chien

<p>In springtime happens to be the biomass burning season in Indochina. Under favor weather conditions, the products of biomass burning pollutants could be transported easily to Taiwan and even East Asia. Actually, the complex interactions of these air pollutants and aerosols features in the boundary layer and aloft have resulted in complex characteristics of air pollutants and aerosols distributions in the lower troposphere. The project “Effect of Megacities on the transport and transformation of pollutants on the Regional and Global scales (EMeRGe)” aims to improve our knowledge and prediction of the transport and transformation patterns of European and Asian megacities pollutant outflows. During the EMeRGe campaign in Asia, the composition of the plumes of pollution entering and leaving Asia measured by the new High Altitude and LOng Range (HALO) aircraft research platform. The HALO aircraft performing optimized transects and vertical profiling in Asia during 12 March and 7 April in 2018. To identify the transportation of biomass burning products, a high resolution (9 km) numerical study by Weather Research Forecast coupled with chemistry model (WRF-Chem) was performed during the campaigns. The long-range transport of biomass burning organic aerosol to Taiwan measured by HALO could be more than 2 ug/m3 at the elevation of 2500 m on 20 March, 2018. Model performances and results will discuss in this meeting. Overall, this series of studies significantly fill the gap of our understanding on air pollutants transformation and transport to Taiwan and East Asia, and show the potential directions of future studies.</p>


1998 ◽  
Vol 25 (1) ◽  
pp. 45-50 ◽  
Author(s):  
D. L. Jordan ◽  
J. F. Spears ◽  
G. A. Sullivan

Abstract Peanut (Arachis hypogaea L.) growers must balance complex interactions among cultivars, planting dates, environmental and physiological stresses during the growing season, and weather conditions at harvest when determining when to dig peanut. Ten field experiments were conducted in North Carolina from 1994 through 1996 to determine the influence of digging date on pod yield and gross return of virginia-type peanut. Beginning in mid- to late September, the cultivars NC 9, NC 10C, NCV-11, VA-C 92R, AgraTech (AT) VC-1, and NC 12C were dug on four dates approximately 7 d apart. Considerable variation in pod yield and gross return was noted among cultivars and experiments. Delaying digging increased pod yield and gross return in some but not all experiments. Greater variation in pod yield and gross return was observed for NC 10C than for AT VC-1 when compared across digging dates. Pod yield and gross return for NC9, NC V-11, VA-C 92R, and NC 12C were intermediate between NC 10C and AT VC-1. Of the cultivars evaluated, yield and gross return of AT VC-1 were the most stable over digging dates. These data suggest that growers should evaluate maturity of peanut in individual fields for each cultivar when determining when to dig. These data also suggest that factors other than maturity impact pod yield and gross return.


2021 ◽  
Vol 11 (16) ◽  
pp. 7352
Author(s):  
Monika Marković ◽  
Jasna Šoštarić ◽  
Marko Josipović ◽  
Atilgan Atilgan

Sustainable and profitable crop production has become a challenge due to frequent weather extremes, where unstable crop yields are often followed by the negative impacts of agronomic practices on the environment, i.e., nitrate leaching in irrigated and nitrogen (N)-fertilized crop production. To study this issue, a three-year field study was conducted during quite different growing seasons in terms of weather conditions, i.e., extremely wet, extremely dry, and average years. Over three consecutive years, the irrigation and N fertilizers rates were tested for their effect on grain yield and composition, i.e., protein, starch, and oil content of the maize hybrids; soil N level (%); and nitrate leaching. The results showed that the impact of the tested factors and their significance was year- or weather-condition-dependent. The grain yield result stood out during the extremely wet year, where the irrigation rate reduced the grain yield by 7.6% due to the stress caused by the excessive amount of water. In the remainder of the study, the irrigation rate expectedly increased the grain yield by 13.9% (a2) and 20.8% (a3) in the extremely dry year and 22.7% (a2) and 39.5% (a3) during the average year. Regardless of the weather conditions, the N fertilizer rate increased the grain yield and protein content. The soil N level showed a typical pattern, where the maximum levels were at the beginning of the study period and were higher as the N fertilizer rate was increased. Significant variations in the soil N level were found between weather conditions (r = −0.719) and N fertilizer rate (r = 0.401). Nitrate leaching losses were expectedly found for irrigation and N fertilizer treatments with the highest rates (a3b3 = 79.8 mg NO3− L).


Author(s):  
V. V. Bobkova ◽  
S. N. Konovalov ◽  
M. T. Upadyshev

The taxonomic structure of tissue endophytic bacterial microbiome was comparatively studied in microplants (undifferentiated explant callus tissues, passage 25) and 5-year clonal apple rootstocks 57-490 and 54-118 cultured from corresponding tissues (passage 1) on sod-podzolic soils with variant granulometry, chemical, physical and physicochemical properties. Proteobacteria (91.6 %) predominated in vitro tissues among other endophytic bacterial phyla in rootstock 57-490, while Proteobacteria (52.5 %) and Firmicutes (47.4 %) — in rootstock 54-118. The endophytic Firmicutes ratio vs. in vitro tissues decreases (0.7-2.0 %) in roots and more severely (0-0.2 %) in leaves. Endophytic Actinobacteriota are revealed in 11.7 % in roots of the study rootstock in heavy loam soil, whilst in medium loam their ratio drops to 2.74.1 % in roots and 0.1-0.2 % in leaves. The phylogenetic diversity indices estimation for main endophytic bacterial phyla in apple rootstock tissue recovers their essentially lower diversity and evenness in culture endosphere (Shannon index 0.42-1.00) vs. open soil roots (1.34-2.08). The leaves Shannon index is typically low (0.06-0.13) indicating poor diversity and evenness of the main endophytic bacterial phyla.


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 45 ◽  
Author(s):  
Nikolaos Kalamaras ◽  
Chris Tzanis ◽  
Despina Deligiorgi ◽  
Kostas Philippopoulos ◽  
Ioannis Koutsogiannis

In this study, Multifractal Detrended Fluctuation Analysis (MF-DFA) is applied to daily temperature time series (mean, maximum and minimum values) from 22 Greek meteorological stations with the purpose of examining firstly their scaling behavior and then checking if there are any differences in their multifractal characteristics. The results showed that the behavior is the same at almost all stations, i.e., time series are positive long-term correlated and their multifractal structure is insensitive to local fluctuations with large magnitude. Moreover, this study deals with the spatial distribution of the main characteristics of multifractal (singularity) spectrum: the dominant Hurst exponent, the width of the spectrum, the asymmetry and the truncation type of the spectrum. The spatial distributions are discussed in terms of possible effects from various climatic features. In general, local atmospheric circulation and weather conditions are found to affect the shape of the spectrum and the corresponding spatial distributions. Furthermore, the intercorrelation of the main multifractal spectrum parameters resulted in a well-defined group of stations sharing similar multifractal characteristics. The results indicate the usefulness of the non-linear analysis in climate research due to the complex interactions among the natural processes.


2007 ◽  
Vol 97 (4) ◽  
pp. 504-511 ◽  
Author(s):  
Michele A. Mansfield ◽  
Douglas D. Archibald ◽  
A. Daniel Jones ◽  
Gretchen A. Kuldau

Sphinganine analog mycotoxins (SAMs) are reported in maize and maize based feeds. Our objectives were to detect and quantify fumonisins B1 and B2 and Alternaria toxins (AAL toxins) AAL-TA and AAL-TB and determine how agronomic practices, weather conditions, and ensiling affected the occurrence and levels in maize silage. Silage was collected at harvest and after ensiling in 2001 and 2002 from 30 to 40 dairies, representing four regions in Pennsylvania. SAMs were quantified using high pressure liquid chromatography (HPLC) with fluorescence detection and high pressure liquid chromatography-mass spectrometry HPLC-MS. The average concentrations and ranges were as follows: fumonisin B1 2.02 μg/g (0.20 to 10.10), fumonisin B2 0.98 μg/g (0.20 to 20.30), AAL-TA 0.17 μg/g (0.20 to 2.01), and AAL-TB 0.05 μg/g (0.03 to 0.90). Fumonisin B1 was the most frequently detected toxin (92%) in all samples, followed by fumonisin B2 (55%), AAL-TA (23%), and -TB (13%). Temperature during maize development was positively correlated with fumonisin occurrence and levels and negatively with AAL-TA, while moisture events were negatively correlated with fumonisins and positively with AAL-TA. Fumonisin levels were higher in silage harvested at later developmental stages (dough through physiological maturity). Ensiling did not affect toxin concentration nor did agronomic practices (tillage system, inoculant use, or silo type) or silage characteristics (dry matter, pH, or organic acid concentration). This is the first report of AAL-TB in silage and on factors that affect SAM frequency and levels in maize silage.


Sign in / Sign up

Export Citation Format

Share Document