scholarly journals Protocatechuic Acid Abrogates Oxidative Insults, Inflammation and Apoptosis in Liver and Kidney Associated With Monosodium Glutamate Intoxication in Rats

Author(s):  
Rami B. Kassab ◽  
Abdulrahman Theyab ◽  
Ali O. Al-Ghamdy ◽  
Mohammad Algahtani ◽  
Ahmad H. Mufti ◽  
...  

Abstract Monosodium glutamate (MSG), a commonly used flavor enhancer, has been reported to induce hepatic and renal dysfunctions. In this study, the palliative role of protocatechuic acid (PCA) in MSG-administered rats was elucidated. Adult male rats were assigned to four groups, namely control, MSG (4 mg/kg), PCA (100 mg/kg), and the last group was co-administered MSG and PCA at aforementioned doses for seven days. Results showed that MSG augmented the hepatic (AST and ALT) and renal (urea and creatinine) functions markers as well as glucose, triglycerides, total cholesterol and LDL levels. Moreover, marked increases in MDA levels accompanied by declines in GSH levels and notable decreases in the activities of SOD, CAT, GPx, and GR were observed in MSG-treated group. The MSG-mediated oxidative stress was further confirmed by down-regulation of Nfe2l2 gene expression levels in both tissues. In addition, MSG enhanced the hepatorenal inflammatory response as witnessed by increased inflammatory cytokines (IL-1b and TNF-α) and elevated NF-κB levels in both tissues. Further, significant increases in Bax (pro-apoptotic biomarker) levels together with decreases in Bcl-2 (anti-apoptotic marker) levels were observed in MSG administration. Hepatic and renal histopathological screening supported the biochemical and molecular findings. On the contrary, co-treatment of rats with PCA resulted in remarkable enhancement of the antioxidant cellular capacity, suppression of inflammatory mediators and apoptosis. These effects are possibly endorsed for activation of Nrf-2 and suppression of NF-kB signaling pathways. Collectively, addition of PCA counteracted MSG-induced hepatic and renal injurious effects through modulation of oxidative, inflammatory and apoptotic alterations.

Author(s):  
Ehab Tousson ◽  
Afaf El-Atrash ◽  
Yosra Karson

Background and Objective: Monosodium glutamate (MSG) is identified as an Accent that is used in the food industry as a flavour enhancer with an umami taste that intensifies the meaty, savoury flavour of food. The present study aimed at evaluating the protective and ameliorative role of rocket seeds extract against monosodium glutamate-induced hepatic renal toxicity and oxidative stress in the male rat. Materials and Methods: A total of 60 male adult albino rats were equally divided into six groups (G1, Control; G2, rocket seeds (RS); G3, ACCENT or MSG; G4, Co- treated (RS+MSG); G5, Post- treated (MSG+RS); G6, Self-treated MSG).  Results: Current results revealed that; a significant increase in serum ALT, AST, ALP, AFP, Urea, Creatinine, potassium ions, chloride ions, cholesterol, triglyceride, HDL, and LDL levels in MSG as compared to control and RS groups. In contrast; a significant decrease in serum albumin, total proteins, catalase, GSH and SOD in liver and kidney homogenates in MSG as compared to control and RS groups. Co- or post-treatment of MSG with rocket seeds improved this change in liver and kidney functions, with best results for co-treatment than post and self-treatment. Conclusion: These findings suggested that the misuse of monosodium glutamate may contribute to continuous hepatic and renal damage. This shows that the desired dose of monosodium glutamate can safely be used with grapes seed in improving hepatic and renal damage in monosodium glutamate in young rats.


Author(s):  
Genan Musheer Ghaib AL-Khatawi ◽  
Mohammed R S AL-Attabi ◽  
Ali Fayadh Bargooth

The current study was conducted at the Department of Biology, College of Science, Wasit University to investigate physiological and histological effect monosodium glutamate in laboratory male rats, preventive role of vitamin E. This study was carried out in Laboratories of College of Science, Wasit University, AL- Shaheed Dr. Fairooz Hospitals, from November 2017 to April 2018.The study included twenty-four and divided into four groups (six rats per group). the first group severe as a control group orally dosed with distilled water, and treated the second group (100 mg/kg b.w. Monosodium glutamate for 30 days, and the third group were dosed orally 200 mg/kg of b.w. for 30 days, either The fourth group were dosed with a mixture of Monosodium glutamate 200mg/kg and vitamin E 100 mg/kg of body weight for 30 days. after the trial period has been sacrificing animals for testing and chemical standards physiological and histological. As are result of by exposure to Monosodium glutamate in blood serum are negatively biochemical whole height of the level of serum cholesterol, triglycerides, Low-density lipoprotein, very- low density lipoprotein, liver enzymes, AST, ALT, ALP, creatinine level, urea serum, further more we noticed a decrease in high density lipoprotein. The preventive treatment resulted in vitamin E 100mg/kg b.w. with Monosodium glutamate 200 mg/kg b.w. (p≤ 0.05) in body weight and relative weights of organs (liver and kidney). We noticed a higher moral when treatment with vitamin E with Monosodium glutamate 100 mg/kg in high- density lipoprotein, while serum cholesterol level decrease, triglycerides, Low-density lipoprotein, very- low density lipoprotein. And liver and kidney functions have improved by low Enzyme AST, ALT, ALP, creatinine and urea serum level. Histological examination revealed that the liver and kidneys, of rats exposed 100, 200 mg/kg of Monosodium glutamate has been adversely affected by exposure to Monosodium glutamate. Whereas, the histological of the liver of animals treated with vitamin E with Monosodium glutamate natural pictures showed improvement. These results demonstrate that MSG toxic effects on the liver and kidney tissue. The more toxic than salt rate too. The study recommends to avoid using MSG as food additives and food for animals because of the toxic effects of this salt.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nadia Z. Shaban ◽  
Sarah M. El-Kot ◽  
Olfat M. Awad ◽  
Afaf M. Hafez ◽  
Ghada M. Fouad

Abstract Background Oxidative stress (OS) and inflammation are the central pathogenic events in liver diseases. In this study, the protective and therapeutic role of Carica Papaya Linn. seeds extract (SE) was evaluated against the hepatotoxicity induced by carbon tetrachloride (CCl4) in rats. Methods The air-dried papaya seeds were powdered and extracted with distilled water. The phytochemical ingredients, minerals, and antioxidant potentials were studied. For determination of the biological role of SE against hepatotoxicity induced by CCl4, five groups of adult male Sprague-Dawley rats were prepared (8 rats per each): C: control; SE: rats were administered with SE alone; CCl4: rats were injected subcutaneously with CCl4; SE-CCl4 group: rats were administered with SE orally for 2 weeks before and 8 weeks during CCl4 injection; SE-CCl4-SE group: Rats were administered with SE and CCl4 as mentioned in SE-CCl4 group with a prolonged administration with SE for 4 weeks after the stopping of CCl4 injection. Then, the markers of OS [lipid peroxidation (LP) and antioxidant parameters; glutathione (GSH), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione peroxidase (GPx)], inflammation [nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α, interleukin (IL)-6], fibrosis [transforming growth factor (TGF)-β], apoptosis [tumor suppressor gene (p53)], liver and kidney functions beside liver histopathology were determined. Results The phytochemical analyses revealed that SE contains different concentrations of phenolics, flavonoids, terpenoids, and minerals so it has potent antioxidant activities. Therefore, the treatment with SE pre, during, and/or after CCl4 administration attenuated the OS induced by CCl4 where the LP was reduced, but the antioxidants (GSH, SOD, GST, and GPx) were increased. Additionally, these treatments reduced the inflammation, fibrosis, and apoptosis induced by CCl4, since the levels of NF-κB, TNF-α, IL-6, TGF-β, and p53 were declined. Accordingly, liver and kidney functions were improved. These results were confirmed by the histopathological results. Conclusions SE has protective and treatment roles against hepatotoxicity caused by CCl4 administration through the reduction of OS, inflammation, fibrosis, and apoptosis induced by CCl4 and its metabolites in the liver tissues. Administration of SE for healthy rats for 12 weeks had no adverse effects. Thus, SE can be utilized in pharmacological tools as anti-hepatotoxicity.


2012 ◽  
Vol 5 (4) ◽  
pp. 192-200 ◽  
Author(s):  
Vivek Kumar Dwivedi ◽  
Anuj Bhatanagar ◽  
Manu Chaudhary

ABSTRACT We investigated the protective role of ceftriaxone plus sulbactam with VRP1034 (Elores) on hematological, lipid peroxidation, antioxidant enzymatic activities and Cd levels in the blood and tissues of cadmium exposed rats. Twenty-four male rats were divided into three groups of eight rats each. The control group received distilled water whereas group II received CdCl2 (1.5 mg/4 ml/body weight) through gastric gavage for 21 days. Group III received CdCl2 and was treated with ceftriaxone plus sulbactam with VRP1034 for 21 days. The hematological, biochemical, lipid per-oxidation levels and enzymatic parameters were measured in plasma and tissues (brain, liver and kidney) of all groups. The Cd, Zn and Fe levels were measured in blood and tissues of all groups. Our findings showed significantly decreased cadmium (p<0.001), malonaldialdehyde (p<0.001) and myloperoxidase (MPO) levels along with significantly increased hemoglobin (p<0.01), RBC (p<0.05), hematocrit (p<0.05) levels and all antioxidant enzymatic activities (SOD, CAT, GR, GPx) in plasma and tissues of ceftriaxone plus sulbactam with VRP1034 treated group as compared to cadmium exposed group. Delta aminolevulinate dehydratase (δ-ALAD) activity was significantly (p<0.001) increased in the blood of ceftriaxone plus sulbactam with VRP1034 treated group as compared with cadmium exposed group. The levels of hepatic and renal parameters were significantly (p<0.001) decreased in ceftriaxone plus sulbactam with VRP1034 treated group as compared to cadmium exposed group. These findings indicate that ceftriaxone plus sulbactam with VRP1034 acts as a potent free radical scavenger and exhibits metal chelating properties that reduce free radical mediated tissue injury and prevent dysfunction of hepatic and renal organs during metal intoxication.


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 318
Author(s):  
Ahmed S. Abdelaziz ◽  
Mohamed A. Kamel ◽  
Amany I. Ahmed ◽  
Shimaa I. Shalaby ◽  
Salama M. El-darier ◽  
...  

Epimedium brevicornum Maxim (EbM) is a well-known Chinese herb that has been widely used for the treatment of several diseases. The main purpose of this study is to examine the role of Epimedium brevicornum extract in certain andrological parameters in rats as a natural modulator for adverse viewpoints associated with chronic administration of tramadol (TAM). Fifty rats were categorized into five groups. Untreated rats were known as Group I, whereas rats in Groups II and III were administered 2.43 g/kg/day of E. brevicornum extract and 50 mg/kg/day of TAM for 130 consecutive days, respectively. Both of Groups IV and V were administered TAM for 65 successive days, followed by concomitant use of both drugs for another 65 days, with the E. brevicornum extract at doses of 0.81 and 2.43 g/kg/day, respectively. TAM showed an injurious effect on sperm attributes, serum hormones, tissue malondialdehyde, superoxide dismutase, and nitric oxide. Elevation of the apoptotic marker Bax and a reduction of Bcl2 were recorded. Histopathological abnormalities have been reported in rat testicles. Rats treated with E. brevicornum extract with TAM showed an improvement in all the parameters tested. It could be presumed that E. brevicornum extract plus TAM exhibits a promising effect on the enhancement of male anti-infertility effects.


2007 ◽  
Vol 26 (1) ◽  
pp. 81-87 ◽  
Author(s):  
Emine Sutken ◽  
Erinc Aral ◽  
Filiz Ozdemir ◽  
Sema Uslu ◽  
Ozkan Alatas ◽  
...  

Melatonin (MEL) and coenzyme Q10 (CoQ10) both display antioxidant and free radical scavenger properties. In the present study, the effect of MEL and CoQ10 on the oxidative stress and fibrosis induced by ochratoxin A (OTA) administration in rats was investigated. Rats were divided into five equal groups, each consisting of seven rats: (1) controls; (2) OTA-treated rats (289 μg/kg/day); (3) OTA+MEL–treated rats (289 μg/kg/day OTA + 10 mg/kg/day MEL); and (4) OTA+CoQ10–treated rats (289 μg/kg/day OTA +1 mg/100 g/day body weight (bw) CoQ10). After 4 weeks of treatment, the level of malondialdehyde (MDA), glutathione peroxidase (GPx), and hydroxyproline (Hyp) were measured in the homogenates of liver and kidney. In the OTA-treated group, the levels of MDA and Hyp in both liver and kidney were significantly increased when compared with the levels of control, whereas GPx activities decreased. In OTA+MEL–treated rats, the levels of MDA and Hyp in both liver and kidney were significantly decreased when compared with the levels of OTA-treated rats; however; GPX activities increased. In the OTA+CoQ10–treated group, the levels of MDA and Hyp were decreased when compared with the levels of OTA-treated rats, whereas GPx activities increased. In the OTA+CoQ 10–treated group, the levels of MDA, Hyp, and GPx were not significantly changed in kidney when compared with OTA-treated group. MEL has a protective effect against OTA toxicity through an inhibition of the oxidative damage and fibrosis both liver and kidney. Although CoQ10 has protective effect against OTA toxicity in liver tissue, it has no effect in kidney tissue.


Author(s):  
Sarah Ibrahim Al Othman, Faten khalif Alanazi, Ghada Jaber S

Monosodium glutamate (MSG) is widely used as a food additive. Excessive consumption of monosodium glutamate has also been shown to affect the liver and kidneys, causing damage to these tissues because of oxidative stress leading to increased production of reactive oxygen species (ROS). The purpose of the study described in this paper was to find out how the liver and kidney toxicity caused by monosodium glutamate can be mitigated using pectin. To this end, 30 albino mice females were divided into four groups. The animals were distributed in special cages. 12-15 weeks with an average body weight of 60 grams. The animals were divided into four groups: the experimental control group (1) comprising 5 female mice were given normal drinking water and the treated group (2) comprising 10 female mice were given monosodium glutamate at a dose of 3 g/kg body weight in drinking water. For three weeks, the treatment group (3) comprising 10 female mice was given pectin at a dose of 300 mg/70 kg body weight in drinking water immediately after the monosodium glutamate dose for three weeks and the pectin group (4) comprising 5 female mice were given Pectin at a dose of 300 mg/70 kg body weight in drinking water for three weeks. The mice were then anesthetized, dissected, and liver and kidney samples were taken from female mice and kept in a 10% neutral formalin solution to make tissue segments. The results showed many histological changes in the liver, such as congestion of the central vein, widening of the sinuses, and the appearance of signs of the death of most hepatocytes, infiltration of the central vein and an invasion of inflammatory cells around the central vein with the emergence of several gaps within the cells. Many of them cavity with the death of most of the tubule cells, the closure of some of them and the expansion and infiltration in others and bleeding inside the tissue. Pectin therapy has led to the disappearance of most of these changes and the emergence of a clear improvement in hepatic and renal tissue.


2020 ◽  
Vol 1 (1) ◽  
pp. 39-50
Author(s):  
Al-Sayeda A. Newairy ◽  
◽  
Fatma A. Hamaad ◽  
Mayssaa M. Wahby ◽  
Heba M. Abdou ◽  
...  

Monosodium glutamate (MSG) is a flavor enhancer. Oxidative neurotoxicity of MSG is well established. This study explored the therapeutic effect of red clover’s (RC) extract against MSG–induced neurodegeneration. HPLC-analysis revealed that formononetin, genistein, daidzein and biochanin A are the major isoflavones in RC’s extract. Four equal groups of male rats were used: control group, MSG-treated group, MSG plus RC-treated group and RC-treated group. The gene expression of iNOS, TNF-α, Cox-2 and p53 were evaluated in the brain extract using RT-PCR. The histological and electron microscopic examinations as well as the cholinergic function, the neurotransmitters and the oxidative status were also assessed. The MSG significantly up regulated the expression levels of iNOS, TNF-α, Cox-2 and p53. The activity of acetyl cholinesterase (AChE), the monoamine neurotransmitters and the oxidative status as well as the histological and electron microscopic examinations confirmed the MSG-induced neurodegeneration. The administration of RC plus MSG diminished the expression of the inflammatory cytokines, the activity of AChE and the levels of monoamine neurotransmitters. RC also ameliorated the oxidative stress and the histological and the electron microscopic alterations. Accordingly, the present study provides an insight on the antioxidative and anti-inflammatory potentials of RC’s extract as neuroprotective agent.


1984 ◽  
Vol 106 (3) ◽  
pp. 338-345 ◽  
Author(s):  
G. Schaison ◽  
P. Thomopoulos ◽  
D. Leguillouzic ◽  
G. Thomas ◽  
M. Moatti

Abstract. To investigate the respective role of triiodothyronine (T3) and thyroxine (T4) in the regulation of TSH secretion, we studied the action of sodium ipodate and propylthiouracil (PTU) in 11 athyreotic patients. The lT4 replacement dose was adjusted to obtain, in each patient, a normal basal TSH level and a normal TSH response to TRH. In the 5 ipodate-treated patients (single 6 g oral dose), the mean serum T3 level fell by 64% below the baseline value and serum rT3 rose 180% above the baseline. The free T4 index (FT4I) did not change whereas the mean serum TSH concentration increased 280% above baseline values. In the 6 PTU-treated patients (250 mg orally every 6 h for 10 days), serum T3 levels fell 33%, serum rT3 increased up to 82% and the FT4I did not change. The mean serum TSH concentration increased 68% above the baseline value. Thus, the mean percentage increase in serum TSH was less in PTU- than in ipodate-treated patients (68% vs 280%). Statistical analysis of the correlation between the serum T3 decrease (ΔT3) and the serum TSH (ΔTSH) increase demonstrated that for the same T3 diminution, the ipodate-treated group displayed higher increase of TSH than the PTU-treated patients. In the rat, PTU interferes with the 5'-deiodination of T4 in the liver and kidney but not in the pituitary, while ipodate appears to have the same effect in all tissues. If this holds true for human subjects, our data strongly suggest that circulating T4 (through its intrapituitary conversion to T3) shares with serum T3 the capacity to regulate TSH secretion in man.


Sign in / Sign up

Export Citation Format

Share Document