scholarly journals An Ion-Imprinted Imidazole-Functionalized Ordered Mesoporous Silica For Selective Removal of Chromium(VI) From Electroplating Effluents

Author(s):  
Shuibin Cen ◽  
Lan Yang ◽  
Ruimin Li ◽  
Shengzhao Gong ◽  
Jiean Tan ◽  
...  

Abstract In this work, ion imprinted technology incorporated with mesoporous silica materials (MCM-41) to obtain the novel specific adsorbent, ion imprinted mesoporous silica. Cr(VI) imprinted mesoporous silica (Cr(VI)IMS) was synthesized and used for adsorption studies and waste water application. A synthesized imidazolyl silane agent act as the functional monomer in the imprinted process to build up highly ordered functionalized imprinted materials. The chemical composition, thermal stability, porosity and highly ordered morphology were characterized by Fourier transform infrared spectroscopy (FTIR), solid state nuclear magnetic resonance(NMR), Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) respectively. The Brunauer-Emmett-Teller (BET) surface area was 1054.51 m2 g-1 in this study. The Cr(VI)IMS showed great adsorption capacity to hexavalent chromium ions in acidic solution up to 45.6 mg g-1. Cr(VI)IMS displayed much higher adsorption capacity to Cr(VI) ions than other negative ions. The relative selectivity coefficient was 2.56, higher than those of other anions (below 1.5). After eight adsorption-regeneration cycles, the adsorption efficiency of Cr(VI)IMS still reached 92.5%. The Cr(VI)IMS was found to exhibit equivalent property after multiple cycles of experiments, indicating good repeatability and reproducibility.

2013 ◽  
Vol 726-731 ◽  
pp. 707-711
Author(s):  
Wen Peng Zhang ◽  
Da Yong Wu ◽  
Ya Kun Wang

Uniform highly ordered mesoporous silica nanofiber membrane was successfully prepared onto copper mesh via coaxial electrospinning combining with the solvent evaporation and extraction induced surfactant assembly process. After a high temperature treatment and amination, it was employed to remove reactive yellow 2 (RY2) in wastewater showing remarkable adsorption capacity. The maximum adsorption capacity can reach up to 371.7 mg/g. The structural properties of synthesized mesoporous silica were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectrum (FTIR). And the adsorption behavior of prepared material was analyzed through three kinds of isotherm models.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1068
Author(s):  
Xinyue Zhang ◽  
Yani Guo ◽  
Wenjun Li ◽  
Jinyuan Zhang ◽  
Hailiang Wu ◽  
...  

The treatment of wastewater containing heavy metals and the utilization of wool waste are very important for the sustainable development of textile mills. In this study, the wool keratin modified magnetite (Fe3O4) powders were fabricated by using wool waste via a co-precipitation technique for removal of Cu2+ ions from aqueous solutions. The morphology, chemical compositions, crystal structure, microstructure, magnetism properties, organic content, and specific surface area of as-fabricated powders were systematically characterized by various techniques including field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), thermogravimetric (TG) analysis, and Brunauer–Emmett–Teller (BET) surface area analyzer. The effects of experimental parameters such as the volume of wool keratin hydrolysate, the dosage of powder, the initial Cu2+ ion concentration, and the pH value of solution on the adsorption capacity of Cu2+ ions by the powders were examined. The experimental results indicated that the Cu2+ ion adsorption performance of the wool keratin modified Fe3O4 powders exhibited much better than that of the chitosan modified ones with a maximum Cu2+ adsorption capacity of 27.4 mg/g under favorable conditions (0.05 g powders; 50 mL of 40 mg/L CuSO4; pH 5; temperature 293 K). The high adsorption capacity towards Cu2+ ions on the wool keratin modified Fe3O4 powders was primarily because of the strong surface complexation of –COOH and –NH2 functional groups of wool keratins with Cu2+ ions. The Cu2+ ion adsorption process on the wool keratin modified Fe3O4 powders followed the Temkin adsorption isotherm model and the intraparticle diffusion and pseudo-second-order adsorption kinetic models. After Cu2+ ion removal, the wool keratin modified Fe3O4 powders were easily separated using a magnet from aqueous solution and efficiently regenerated using 0.5 M ethylene diamine tetraacetic acid (EDTA)-H2SO4 eluting. The wool keratin modified Fe3O4 powders possessed good regenerative performance after five cycles. This study provided a feasible way to utilize waste wool textiles for preparing magnetic biomass-based adsorbents for the removal of heavy metal ions from aqueous solutions.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 193
Author(s):  
Kamrun Nahar Fatema ◽  
Chang-Sung Lim ◽  
Yin Liu ◽  
Kwang-Youn Cho ◽  
Chong-Hun Jung ◽  
...  

We described the novel nanocomposite of silver doped ZrO2 combined graphene-based mesoporous silica (ZrO2-Ag-G-SiO2,) in bases of low-cost and self-assembly strategy. Synthesized ZrO2-Ag-G-SiO2 were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, Nitrogen adsorption-desorption isotherms, X-ray photoelectron spectroscopy (XPS), and Diffuse Reflectance Spectroscopy (DRS). The ZrO2-Ag-G-SiO2 as an enzyme-free glucose sensor active material toward coordinate electro-oxidation of glucose was considered through cyclic voltammetry in significant electrolytes, such as phosphate buffer (PBS) at pH 7.4 and commercial urine. Utilizing ZrO2-Ag-G-SiO2, glucose detecting may well be finished with effective electrocatalytic performance toward organically important concentrations with the current reaction of 9.0 × 10−3 mAcm−2 and 0.05 mmol/L at the lowest potential of +0.2 V, thus fulfilling the elemental prerequisites for glucose detecting within the urine. Likewise, the ZrO2-Ag-G-SiO2 electrode can be worked for glucose detecting within the interferometer substances (e.g., ascorbic corrosive, lactose, fructose, and starch) in urine at proper pH conditions. Our results highlight the potential usages for qualitative and quantitative electrochemical investigation of glucose through the ZrO2-Ag-G-SiO2 sensor for glucose detecting within the urine concentration.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Abeer M. Beagan

In this study, mesoporous silica nanoparticles (MSNs) were synthesised using the Stober method and functionalised with cysteine (MSN-Cys) for removal of Methylene Blue (MB) from aqueous solution using the batch method. The adsorbent nanoparticles were characterised by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), FTIR, BET, and TGA. Several influential factors on the adsorption of MB onto the surface of MSN-Cys particles were investigated, including pH, initial concentration, and contact time. The adsorption capacity of MB from aqueous solution increased from circa 70 mg/g MSN-Cys in acidic media to circa 140 mg/g MSN-Cys in basic media. Adsorption isotherms and kinetic models of adsorption were used to clarify the adsorption process. The measured adsorption isotherm was fitted with a Freundlich model for all solutions, and the kinetic model was determined to be pseudo-second-order.


Author(s):  
Katarzyna Matras-Postolek ◽  
A. Zaba ◽  
S. Sovinska ◽  
D. Bogdal

Zinc sulphide (ZnS) and zinc selenide (ZnSe) and manganese-doped and un-doped with different morphologies from 1D do 3D microflowers were successfully fabricated in only a few minutes by solvothermal reactions under microwave irradiation. In order to compare the effect of microwave heating on the properties of obtained  nanocrystals, additionally the synthesis under conventional heating was conducted additionally in similar conditions. The obtained nanocrystals were systematically characterized in terms of structural and optical properties using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy (DR UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area analysis. The photocatalytic activity of ZnSe, ZnS, ZnS:Mn and ZnSe:Mn nanocrystals with different morphologies was evaluated by the degradation of methyl orange (MO) and Rhodamine 6G (R6G), respectively. The results show that Mn doped NCs samples had higher coefficient of degradation of organic dyes under ultraviolet irradiation (UV).


2015 ◽  
Vol 69 (5) ◽  
pp. 561-565 ◽  
Author(s):  
Muhammad Shoaib ◽  
Hassan Al-Swaidan

The effects of the reaction vessel pressure on the BET surface area, pore volume and pore size of the synthesis of sliced activated carbons (SAC) at 850?C starting from 0.10 to 0.40 bars were investigated. Other synthetic variables like dwell time, CO2 flow rate and heating ramp rate were kept constant during the whole study. Methodology involves a single step procedure using the mixture of gases (N2 and CO2). During activation flow rate of both gases are kept at 150 and 50ml/min respectively. The BET surface areas of the SAC prepared at 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 and 0.40 bar after 30 minutes activation time are 666, 745, 895, 1094, 835, 658 and 625 m2/g, respectively. Scanning electron microscopy (SEM) for surface morphology, Energy dispersive spectroscopy (EDS), Transmission electron microscopy (TEM) for nano particle size were also carried out that also confirms the same trend.


2013 ◽  
Vol 709 ◽  
pp. 89-92
Author(s):  
Xiang Li ◽  
Xin Mei Liu ◽  
Zi Feng Yan

In the presence of polyethylene glycol (PEG2W),bimodal mesoporous γ-Al2O3 was successfully synthesized via hydrothermal method. The samples were respectively characterized by X-ray diffraction (XRD), N2 physisorption, transmission electron microscopy (TEM), thermogravimetric and differential scanning calorimeter (TG-DSC). Introduction of PEG2W can increase the relative crystallinity of AACH and γ-Al2O3. The BET surface area and pore volume of alumina shows an increasing trend with increasing of PEG2W content, while the pore size shows an opposite tendency. The PEG2W also plays an important role in inducing the formation of the nanorod-like alumina.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2090616
Author(s):  
Ricardo Andrés Solano Pizarro ◽  
Adriana Patricia Herrera Barros

In this research, the photocatalytic degradation of cypermethrin using iron-titanium dioxide (Fe-TiO2) nanoparticles supported in a biomaterial was evaluated. The nanoparticles of TiO2 were synthesized by the green chemistry method assisted by ultrasound and doped by chemical impregnation using Fe+3:Ti molar ratios of 0, 0.05, 0.075 and 0.1 to make efficient use of direct sunlight ( λ > 310 nm). All nanoparticles were immobilized on the surface of coconut spathe ( Cocos nucifera). The degradation was carried out at room temperature and natural pH in a flat plate solar reactor, on which the composite material was subjected. The concentration of cypermethrin was determined after 12,000 J m−2 of accumulated radiation from gas chromatography–mass spectrometry and the resulting material was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy, and Brunauer-Emmett-Teller (BET) surface area. The best results were achieved with the use of Evonik TiO2 P-25, Fe:Ti = 0 and Fe:Ti = 0.05 in suspension, with percentages of degradation of cypermethrin of 99.84%, 99.62%, and 100%, respectively. However, the materials supported on the biomaterial of coconut allowed to reach degradation percentages higher than 80%, with the advantage that it minimizes operating costs, as they are not necessarily filtering or centrifuging processes to separate the catalyst.


2020 ◽  
Vol 81 (5) ◽  
pp. 1080-1089
Author(s):  
Huan-Yan Xu ◽  
Dan Lu ◽  
Qu Tan ◽  
Xiu-Lan He ◽  
Shu-Yan Qi

Abstract Bismuth oxyhalides (BiOXs, X = Cl, Br and I) are emerging photocatalytic materials with unique layered structure, flexible band structure and superior photocatalytic activity. The purpose of this study was to develop a facile alcoholysis route to prepare BiOClxI1−x nanosheet solid solutions at room temperature. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence emission spectroscopy (PL) and Brunauer–Emmett–Teller (BET) surface area analyzer were used to characterize the as-prepared photocatalysts. These results revealed that two-dimension BiOClxI1−x nanosheet solid solutions could be obtained with high percentage of {001} crystal facets exposed. Moreover, the formation of solid solution could regularly change the optical absorption thresholds and band gaps of BiOClxI1−x photocatalysts. The photocatalytic experiments indicated that BiOCl0.75I0.25 exhibited the highest photocatalytic performance for the degradation of Rhodamine B (RhB) under simulated sunlight irradiation and the photocatalytic process followed a pseudo-first-order kinetic equation. A possible mechanism of RhB photodegradation over BiOClxI1−x solid solutions was proposed based on the structural properties of BiOClxI1−x solid solutions and RhB photosensitization.


Healthcare ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 52 ◽  
Author(s):  
Shameem Hasan ◽  
A. Iasir ◽  
Tushar Ghosh ◽  
Bhaskar Sen Gupta ◽  
Mark Prelas

Fuller’s earth spherical beads using chitosan as a binder were prepared for the removal of strontium ions from aqueous solution. The adsorbents were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed the porous nature of the beads. The Brunauer–Emmett–Teller (BET) surface area of the beads was found to be 48.5 m2/g. The adsorption capacities of the beads were evaluated under both batch and dynamic conditions. The adsorption capacity was found to be ~29 mg/g of adsorbent at 298 K when the equilibrium concentration of strontium in the solution was 925 mg/L at pH 6.5. The X-ray photoelectron spectroscopy (XPS) data suggest that strontium uptake by the beads occurs mainly through an ion-exchange process. Kinetic data indicate that the sorption of strontium onto the beads follows anomalous diffusion. Thermodynamic data suggest that the ion-exchange of Sr2+ on the bead surface was feasible, spontaneous and endothermic in nature.


Sign in / Sign up

Export Citation Format

Share Document