scholarly journals Effects of initial α-phase content on the electrical, thermal, and mechanical properties of pressureless solid-state sintered SiC ceramics

Author(s):  
Rohit MALIK ◽  
Young-Wook Kim

Abstract αand β-SiC starting powders of similar particle sizes were used to investigate the effect of initial α-phase content on the electrical, thermal, and mechanical properties of pressureless solid-state sintered (PSS) SiC ceramics with B4C and C. For β-SiC starting powders, a coarse-grained microstructure with elongated platelet grains formed by the 3C to 6H to 4H-SiC phase transformation was obtained. In contrast, α-SiC powders exhibited a fine-grained microstructure with platelet grains. The electrical resistivity decreased by an order of magnitude with increasing initial α-phase content presumably due to (1) an increased 6H-SiC content causing a decrease in bandgap energy and (2) the low soluble impurity content (Fe and V) of the α-SiC powders. The thermal conductivity increased by approximately 32% with increasing initial α-phase content due to (1) an increased 6H-SiC content, which has a higher intrinsic thermal conductivity compared to 4H and (2) the low impurity content of the α-SiC powders. The flexural strength increased by approximately 16% with increasing initial α-phase content due to a decreased flaw size with decreasing grain size. However, the fracture toughness and hardness were insensitive to the change in initial α-phase content.

2014 ◽  
Vol 616 ◽  
pp. 23-26 ◽  
Author(s):  
Kwang Young Lim ◽  
Tae Young Cho ◽  
Young Wook Kim ◽  
Seung Jae Lee

By using α-and/or β-SiC powders, the effects of initial α-phase content on the microstructure and thermal properties of the SiC ceramics sintered with Y2O3 and Sc2O3 were investigated. When α-SiC powder was used, the microstructure consisted of large equiaxed grains and small equiaxed grains. The average grain size decreased with increasing α-SiC content in the starting composition. The thermal conductivity decreased with increasing α-SiC content in the starting composition. Such results suggest that the grain growth of SiC ceramics is beneficial in increasing the thermal conductivity of liquid-phase sintered SiC ceramics. The thermal conductivity of SiC ceramics processed from a 90% β-SiC-10% α-SiC powder mixture was 159 W/m∙K at room temperature.


2021 ◽  
Author(s):  
Yue Zhu ◽  
Qingyu Peng ◽  
Haowen Zheng ◽  
Fuhua Xue ◽  
Pengyang Li ◽  
...  

With the development of multifunction and miniaturization in modern electronics, polymeric films with strong mechanical performance and high thermal conductivity are urgently needed. Two-dimensional transition metal carbides and nitrides (MXenes)...


2004 ◽  
Vol 19 (11) ◽  
pp. 3270-3278 ◽  
Author(s):  
Xinwen Zhu ◽  
Hiroyuki Hayashi ◽  
You Zhou ◽  
Kiyoshi Hirao

Dense β–Si3N4 ceramics were fabricated from α–Si3N4 raw powder by gas-pressure sintering at 1900 °C for 12 h under a nitrogen pressure of 1 MPa, using four different kinds of additive compositions: Yb2O3–MgO, Yb2O3–MgSiN2, Y2O3–MgO, and Y2O3–MgSiN2. The effects of additive composition on the microstructure and thermal and mechanical properties of β–Si3N4 ceramics were investigated. It was found that the replacement of Yb2O3 by Y2O3 has no significant effect on the thermal conductivity and fracture toughness, but the replacement of MgO by MgSiN2 leads to an increase in thermal conductivity from 97 to 113 Wm-1K-1and fracture toughness from 8 to 10 MPa m1/2, respectively. The enhanced thermal conductivity of the MgSiN2-doped materials is attributed to the purification of β–Si3N4 grain and increase of Si3N4–Si3N4 contiguity, resulting from the enhanced growth of large elongated grains. The improved fracture toughness of the MgSiN2-doped materials is attributed to the increase of grain size and fraction of large elongated grains. However, the same thermal conductivity between the Yb2O3- and Y2O3-doped materials is related to not only their similar microstructures, but also the similar abilities of removing oxygen impurity in Si3N4 lattice between Yb2O3 and Y2O3. The same fracture toughness between the Yb2O3- and Y2O3-doped materials is consistent with their similar microstructures. This work implies that MgSiN2 is an effective sintering aid for developing not only high thermal conductivity (>110 Wm−1K−1) but also high fracture toughness (>10 MPa m1/2) of Si3N4 ceramics.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4629
Author(s):  
Przemysław Brzyski ◽  
Piotr Gleń ◽  
Mateusz Gładecki ◽  
Monika Rumińska ◽  
Zbigniew Suchorab ◽  
...  

The aim of the research presented in the article was to check the differences in the hygro-thermal and mechanical properties of hemp-lime composites with different shives fractions, depending on the direction of mixture compaction. The research part of the paper presents the preparation method and investigation on the composites. Thermal conductivity, capillary uptake, as well as flexural and compressive strengths were examined. Additionally, an analysis of the temperature distribution in the external wall insulated with the tested composites was performed. The results confirm that the direction of compaction influences the individual properties of the composites in a similar way, depending on the size of the shives. The differences are more pronounced in the case of the composite containing longer fractions of shives. Both thermal conductivity of the material and the capillary uptake ability are lower in the parallel direction of the compaction process. Composites exhibit greater stiffness, but they fail faster with increasing loads when loaded in the direction perpendicular to compaction.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2770 ◽  
Author(s):  
Dongxu Wu ◽  
Congliang Huang ◽  
Yukai Wang ◽  
Yi An ◽  
Chuwen Guo

In this work, SiC and Cu particles were utilized to enhance the thermal and mechanical properties of Al matrix composites. The ball-milling and cold-compact methods were applied to prepare Al matrix composites, and the uniform distribution of SiC and Cu particles in the composite confirms the validity of our preparation method. After characterizing the thermal conductivity and the compressibility of the prepared composites, results show that small particles have a higher potential to improve compressibility than large particles, which is attributed to the size effect of elastic modulus. The addition of SiC to the Al matrix will improve the compressibility behavior of Al matrix composites, and the compressibility can be enhanced by 100% when SiC content is increased from 0 to 30%. However, the addition of SiC particles has a negative effect on thermal conductivity because of the low thermal conductivity of SiC particles. The addition of Cu particles to Al-SiC MMCs could further slightly improve the compressibility behavior of Al-SiC/Cu MMCs, while the thermal conductivity could be enhanced by about 100% when the Cu content was increased from 0 to 30%. To meet the need for low density and high thermal conductivity in applications, it is more desirable to enhance the specific thermal conductivity by enlarging the preparation pressure and/or sintering temperature. This work is expected to supply some information for preparing Al matrix composites with low density but high thermal conductivity and high compressibility.


2013 ◽  
Vol 302 ◽  
pp. 136-139 ◽  
Author(s):  
Ho Sung Lee ◽  
Jong Hoon Yoon ◽  
Joon Tae Yoo ◽  
Ji Ung Choi

In the solid state bonding, joint are made by pressing surfaces together at high temperature so that a bond grows across the interface by atomic diffusion. In order to satisfy both requirements of thermal and mechanical properties of aerospace vehicle, conductive CuCrZr alloy was bonded to duplex steel with high strength. Solid state bonding was performed at 3 different pressure conditions and at temperatures of 850°C and 950°C. Microstructural and mechanical evaluation was performed to obtain the optimum joining condition.


2020 ◽  
Author(s):  
imane baba ◽  
Mounsif Ibnoussina ◽  
Omar Witam

<p>Over the past few decades, the construction industry has focused on sustainable, environmentally friendly and easily recyclable materials. The objective of this work is to characterize and enhance the thermal conductivity, mechanical strength and setting time of a composite material based on plaster and lime. This material is designed for use in plasters.</p><p>Two types of gypsum are studied, the first one belongs to the Safi basin, the second one characterizes the High Atlas of Marrakech and precisely Douar Tafza. Geologically speaking, the two sites have many similarities. They are characterized by a Meso-Cenozoic age coverage covering a deformed Paleozoic age basement.</p><p>The characterization of the plaster's raw material, gypsum, was necessary to determine its physical and geotechnical properties, mineralogy, thermal behaviour and microscopic structure. Several analyses have been developed such as: pycnometer density measurement, X-ray diffraction, infrared spectroscopy and scanning electron microscopy.</p><p>We made samples, of standardized dimensions, of two mixtures based on the two types of plaster reinforced by the addition of two types of lime from different localities. The latter are from Marrakech and the Agadir region. The water/plaster mass ratio was set at 0.75 and the addition of lime was achieved by increasing its percentage in slices by 12.5% and up to 50%.</p><p>The reinforcement of plaster with lime has enhanced its thermal and mechanical properties and setting time. The measurements show that the addition of lime has reduced the thermal conductivity and increased the mechanical strength of both types of plaster. In addition, following the addition of lime, the setting time has decreased and the basicity of the material has increased. Noting that the intrinsic properties of the raw material influence the mechanical and thermal properties of the material.</p><p><strong>Keywords:</strong>   plaster, enhancement, properties, mechanical, thermal, Morocco</p>


Sign in / Sign up

Export Citation Format

Share Document