scholarly journals Investigation of the effects of six medicinal plants with antiviral effects against COVID-19

Author(s):  
Harun ALP ◽  
Hasan ASİL ◽  
Demet Duman

Abstract Today, the coronavirus epidemic, which caused the death of 79 million cases and 1743 thousand people in 218 countries around the world, continues to increase its impact all over the world. Researchers are still trying to develop an effective solution against covid-19, including vaccines and drugs. However, there are few studies that determine the effect of natural products obtained from plants on covid-19. Medicinal and aromatic plants have been used for therapeutic purposes since the existence of humanity. In this study, the effects of some important medicinal plants including Licorice (Glycyrrhiza glabra), Saffron (Crocus sativus L.), Nigella (Nigella sativa L.), Laurel (Lauris nobilis), Karabaş (Lavandula stoechas), and Zahter (Thymbra spicata L. var. Spicata) against Covid-19 were investigated in vitro conditions. The six plants were evaluated for cytotoxic effect on Vero cells and determining inhibition of viral replication in Vero-E6 cells at concentrations of broad-spectrum antiviral non-cytotoxic against Covid-19 in cell culture and an additional antiviral effect against Covid-19. According to the results, the five examined plants (Saffron, Nigella, Laurel, Karabaş, Zahter) were ineffective against Covid-19 in vitro conditions. Interisingly, the water extract obtained from the root of the licorice plant (Glycyrrhiza glabra) inhibited Covid-19 in vitro conditions in the 2nd dilution (1: 4) following the initial concentration in Vero-E6 cells.

2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1278-1285
Author(s):  
Mohamed Yafout ◽  
Amine Ousaid ◽  
Ibrahim Sbai El Otmani ◽  
Youssef Khayati ◽  
Amal Ait Haj Said

The new SARS-CoV-2 belonging to the coronaviruses family has caused a pandemic affecting millions of people around the world. This pandemic has been declared by the World Health Organization as an international public health emergency. Although several clinical trials involving a large number of drugs are currently underway, no treatment protocol for COVID-19 has been officially approved so far. Here we demonstrate through a search in the scientific literature that the traditional Moroccan pharmacopoeia, which includes more than 500 medicinal plants, is a fascinating and promising source for the research of natural molecules active against SARS-CoV-2. Multiple in-silico and in-vitro studies showed that some of the medicinal plants used by Moroccans for centuries possess inhibitory activity against SARS-CoV or SARS-CoV-2. These inhibitory activities are achieved through the different molecular mechanisms of virus penetration and replication, or indirectly through stimulation of immunity. Thus, the potential of plants, plant extracts and molecules derived from plants that are traditionally used in Morocco and have activity against SARS-CoV-2, could be explored in the search for a preventive or curative treatment against COVID-19. Furthermore, safe plants or plant extracts that are proven to stimulate immunity could be officially recommended by governments as nutritional supplements.


2021 ◽  
Vol 16 (7) ◽  
pp. 15-22
Author(s):  
Paul Giftson ◽  
Jerrine Joseph ◽  
Revathy Kalyanasundaram ◽  
V. Ramesh Kumar ◽  
Wilson Aruni

Tuberculosis (TB) is a communicable disease and remains one of the top 10 causes of death worldwide. One fourth of the world population is infected with TB at a risk of developing disease. The increase in the incidence of drug resistant TB around the world urges the need to develop a new candidate to fight against the disease. Plants were considered as the rich source of bioactive components to be used as potential drugs. Medicinal plants are used in pure as well as crude materials for their medicinal properties. Our research aims in identifying the phyto-molecules which have anti- tuberculosis property. Four medicinal plants namely, Acalyphaciliata (Kuppaimeni), Solanumtrilobatum (Thuthuvalai), Momordicacharantia (Bitter Gourd) and Sennaauriculata (Avaram) were chosen to evaluate their antimicrobial activity focusing on anti-tubercular activity. The methanol extracts of the medicinal plants showed significant inhibitory activity against bacterial and fungal pathogens. Sennaauriculata methanol extracts showed activity against S. aureus, E. coli, P. aeruginosa and C. albicans. In the screening of antimycobacterial activity done by LRP assay, among the plant extracts tested, the hexane crude extracts of Momordicacharantia (Bitter Gourd) showed 82.2% and 81.03% of inhibition against M. tuberculosis H37Rv at 500µg/ml and 250µg/ml concentration respectively. Similarly, the methanol crude extracts of Momordicacharantia showed 87.14% and 63.55% of inhibition at 500µg/ml and 250µg/ml concentration respectively.


2021 ◽  
Author(s):  
Ashraf fawzy mosa ◽  
Mostafa abo Elhoda Mohamed

Abstract Background: Covid-19 Virus infection poses significant global health challenges and considered a global epidemic sweeping all countries of the world Which prompted scientists around the world to search for a quick or safe treatment to preserve people's lives .So far, options for controlling and treating the disease have not been revealed. The current study was conducted to evaluate the effectiveness of pomegranate peels extract against the Covid-19 virus in the laboratory. Methods: In this research, tow methods of extraction are carried out ethyl alcohol and distal water extract of pomegranate peels . activity of the extract assessed using 50% Tissue Culture Infectious Doses (TCID50) method in Vero E6 cells. Results: Pomegranate peels extract had the highest inhibitory effect against Covid -19 virus with IC50 value of 0.125, 0.0625 and 0.031256 μl in Vero E6 cells. Conclusion: Based on our results, the aqueous extract of pomegranate peels can inhibit Covid-19 virus replication in vitro.


2021 ◽  
Author(s):  
Dong-Kyun Ryu ◽  
Hye-Min Woo ◽  
Bobin Kang ◽  
Hanmi Noh ◽  
Jong-In Kim ◽  
...  

The Delta variant originally from India is rapidly spreading across the world and causes to resurge infections of SARS-CoV-2. We previously reported that CT-P59 presented its in vivo potency against Beta and Gamma variants, despite its reduced activity in cell experiments. Yet, it remains uncertain to exert the antiviral effect of CT-P59 on the Delta and its associated variants (L452R). To tackle this question, we carried out cell tests and animal study. CT-P59 showed reduced antiviral activity but enabled neutralization against Delta, Epsilon, and Kappa variants in cells. In line with in vitro results, the mouse challenge experiment with the Delta variant substantiated in vivo potency of CT-P59 showing symptom remission and virus abrogation in the respiratory tract. Collectively, cell and animal studies showed that CT-P59 is effective against the Delta variant infection, hinting that CT-P59 has therapeutic potency for patients infected with Delta and its associated variants.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1602
Author(s):  
Marina Plotnikova ◽  
Alexey Lozhkov ◽  
Ekaterina Romanovskaya-Romanko ◽  
Irina Baranovskaya ◽  
Mariia Sergeeva ◽  
...  

Type III interferons (lambda IFNs) are a quite new, small family of three closely related cytokines with interferon-like activity. Attention to IFN-λ is mainly focused on direct antiviral activity in which, as with IFN-α, viral genome replication is inhibited without the participation of immune system cells. The heterodimeric receptor for lambda interferons is exposed mainly on epithelial cells, which limits its possible action on other cells, thus reducing the likelihood of developing undesirable side effects compared to type I IFN. In this study, we examined the antiviral potential of exogenous human IFN-λ1 in cellular models of viral infection. To study the protective effects of IFN-λ1, three administration schemes were used: ‘preventive’ (pretreatment); ‘preventive/therapeutic’ (pre/post); and ‘therapeutic’ (post). Three IFN-λ1 concentrations (from 10 to 500 ng/mL) were used. We have shown that human IFN-λ1 restricts SARS-CoV-2 replication in Vero cells with all three treatment schemes. In addition, we have shown a decrease in the viral loads of CHIKV and IVA with the ‘preventive’ and ‘preventive/therapeutic’ regimes. No significant antiviral effect of IFN-λ1 against AdV was detected. Our study highlights the potential for using IFN-λ as a broad-spectrum therapeutic agent against respiratory RNA viruses.


2021 ◽  
Author(s):  
Wei Jingchen ◽  
Lu Yunfei ◽  
Rui Ying ◽  
Zhu Xuanyu ◽  
He Songqing ◽  
...  

COVID-19 pneumonia has now spread widely in the world. Currently, no specific antiviral drugs are available. The vaccine is the most effective way to control the epidemic. Passive immune antibodies are also an effective method to prevent and cure COVID-19 pneumonia. We used the SARS-CoV-2 S receptor- binding domain (RBD) as an antigen to immunize layers in order to extract, separate, and purify SARS-CoV-2-IgY from egg yolk. SARS-CoV-2-IgY (S-IgY) can block the entry of SARS-CoV-2 into the Cells and reduce the viral load in cells. The Half effective concentration (EC50) of W3-IgY (S-IgY in the third week after immunization) is 1.35 plusm 0.15nM. The EC50 of W9-IgY (S-IgY in the ninth week after immunization) is 2.76 plusm 1.54 nM. When the dose of S-IgY is 55 nM, the fluorescence representing intracellular viral protein is obviously weakened in Immunofluorescence microscopy. Results of Sars-CoV-2 /Vero E6 cell experiment confirmed that S-IgY has a strong antiviral effect on SARS-CoV-2, and its (EC50) is 27.78 plusm1.54 nMvs 3,259 plusm 159.62 nM of Redesivir (differ ﹥106 times P<0.001 ). S-IgY can inhibit the entry and replication of SARS-CoV-2, which is related to its targeting the ACE2 binding domain. S-IgY is safe, efficient, stable, and easy to obtain. This antibody can be an effective tool for preventing and treating COVID-19 pneumonia.


2021 ◽  
Vol 8 ◽  
Author(s):  
Manuel Gómez-García ◽  
Héctor Puente ◽  
Héctor Argüello ◽  
Óscar Mencía-Ares ◽  
Pedro Rubio ◽  
...  

Organic acid and essential oils (EOs), well-known antimicrobials, could also possess antiviral activity, a characteristic which has not been completely addressed up to now. In this study, the effect of two organic acids (formic acid and sodium salt of coconut fatty acid distillates) and two single EO compounds (thymol and cinnamaldehye) was evaluated against porcine epidemic diarrhea virus (PEDV). The concentration used for each compound was established by cytotoxicity assays in Vero cells. The antiviral activity was then evaluated at three multiplicities of infection (MOIs) through visual cytopathic effect (CPE) evaluation and an alamarBlue assay as well as real-time reverse-transcription PCR (RT-qPCR) and viral titration of cell supernatants. Formic acid at at a dose of 1,200 ppm was the only compound which showed antiviral activity, with a weak reduction of CPE caused by PEDV. Through the alamarBlue fluorescence assay, we showed a significant anti-CPE effect of formic acid which could not be observed by using an inverted optical microscope. RT-qPCR and infectivity analysis also showed that formic acid significantly reduced viral RNA and viral titers in a PEDV MOI-dependent manner. Our results suggest that the antiviral activity of formic acid could be associated to its inhibitory effect on viral replication. Further studies are required to explore the anti-PEDV activity of formic acid under field conditions alone or together with other antiviral agents.


2021 ◽  
Vol 17 (2) ◽  
pp. 691-698
Author(s):  
Vandana ◽  
Rajesh Lather ◽  
Sridevi Tallapragada ◽  
Gurnam Singh

Since thousands years back approximately around 900 BC, medicinal plants are considered as a source of many biomolecules with therapeutic potential. Herbal medicines are considered as safer, better, physiologically compatible and costeffective. The oldest evidence of medicinal and aromatic plants depicts that with the emergence of human civilization, plants have been considered as the main source to heal and cure various serious ailments. It has been proven that the secondary metabolites e.g. alkaloid, glycosides, flavonoides, steroids etc present in the medicinal plants possesses ability to prevent occurrence of some of the diseases, means medicinal plants acts as a “preventive medicine”. Medicinal plants have a paramount importance and a great interest due to its pharmaceutical, cosmetic and nutritional values. Some plants are also considered as an important source of nutrition and are known to have a variety of compounds with potential therapeutic properties. India is the principal repository of large number of medicinal and aromatic plants or we can say India is one of the rich mega-biodiversity countries of the world. Medicinal plants are “backbone” of traditional medicinal system (TMS). Crude drugs are usually dried parts of medicinal and aromatic plants (MAPs) such as roots, stems, wood, bark, seeds, fruits, flowers, leaves, rhizomes, whole plant etc. that form the essential raw material for the production of medicines in various systems of Ayurveda, Siddha, Unani, Tibatian, Tribal and Homeopathy. According to the survey of the World Health Organization (WHO), about 80% of the world population are using herbs and other traditional medicines for their primary healthcare and have established three kinds of herbal medicines: raw plant material, processed plant material, and herbal products. Now days, variety of available herbs are used throughout the world and they continue to promote good health. As the benefits from medicinal and aromatic plants are recognized, these plants will have a special role for humans in the future. The present review on medicinal and aromatic plants revealed similar combination of studies.


2021 ◽  
Vol 7 (2) ◽  
pp. 95-98
Author(s):  
Zakia Jahan ◽  
Masudul Hassan

The Coronavirus disease 2019 (COVID-19) outbreak, forcing us to face unprecedented moments in the world. The huge devastating impact of the world due to the covid-19 attack causes the brink of no return. However, there is no proven and specific treatment for Covid -19. Very few medications have received Emergency Use of Authorization. A recent in vitro study was the first time to find out and to assess the antiviral effect of Ivermectin on COVID-19. The study showed that Ivermectin was active against COVID- 19-infected cells, was able to kill effectively almost all viral particles within 48 h. In these moments of crisis, FDA-approved ivermectin is a ray of hope. Bangladesh Journal of Infectious Diseases 2020;7(2):95-98


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 6
Author(s):  
Michal Stefanik ◽  
Fortunatus C Ezebuo ◽  
Jan Haviernik ◽  
Ikemefuna C. Uzochukwu ◽  
Martina Fojtikova ◽  
...  

Arthropod-borne flaviviruses such as tick-borne encephalitis virus (TBEV), West Nile virus (WNV), Zika virus (ZIKV), Dengue virus (DENV), and yellow fever virus (YFV) cause several serious life-threatening syndromes (encephalitis, miscarriages, paralysis, etc.). No effective antiviral therapy against these viruses has been approved yet. We selected, via in silico modeling, 12 U.S. Food and Drug Administration (FDA)-approved antiviral drugs (paritaprevir, dolutegravir, raltegravir, efavirenz, elvitegravir, tipranavir, saquinavir, dasabuvir, delavirdine, maraviroc, trifluridine, and tauroursodeoxycholic acid) for their interaction with ZIKV proteins (NS3 helicase and protease, non-structural protein 5 (NS5) RNA-dependent RNA polymerase, and methyltransferase). Only three of them were active against ZIKV, namely, dasabuvir (ABT-333), efavirenz, and tipranavir. These compounds inhibit virus replication of ZIKV (MR-766 and Paraiba_01) in Vero cells; therefore, we tested these compounds against other medically important flaviviruses WNV (13-104 and Eg101) and TBEV (Hypr). Dasabuvir was originally developed as an antiviral drug against hepatitis C virus (HCV); tipranavir and efavirenz are used for treating human immunodeficiency virus (HIV) infection. The antiviral effects of efavirenz, tipranavir, and dasabuvir were tested for ZIKV in HUH-7, astrocytes (HBCA), and UKF-NB-4 cells, where we also identified a significant inhibition effect of these compounds. For Vero cells, efavirenz inhibited all investigated viruses with EC50 ranging from 9.70 to 29.26 µM; the tipranavir inhibition effect was from 16.19 (WNV 13-104) to 27.47 µM (TBEV), while the strongest and most robust antiviral effect was demonstrated in the case of dasabuvir (EC50 values ranging from 9.09 (TBEV) to 10.85 µM (WNV 13-104)). These results warrant further research of these drugs, either individually or in combination, as possible pan-flavivirus inhibitors.


Sign in / Sign up

Export Citation Format

Share Document