scholarly journals Enhancing Energy Efficiency for Cellular-Assisted Vehicular Networks by Online Learning-Based mmWave Beam Selection

Author(s):  
Jinsong Gui ◽  
Yao Liu

Abstract Millimeter-Wave (mmWave) technology is deemed as a feasible approach for future vehicular communications. However, mmWave signals are characterized by high path loss and penetration loss, which can be alleviated by directional communication. Directional transmission performance depends on beam alignment between transmitter and receiver, which is not easy to achieve in highly dynamic vehicular communications. The existing works addressed beam alignment problem by designing online learning-based mmWave beam selection schemes, which can be well adapted to high dynamic vehicular scenarios. However, this type of works does not take energy efficiency into account. Therefore, we propose an Energy efficiency-based FML (EFML) scheme to compensate for this shortfall, where the power consumption can be reduced as far as possible under the premise of meeting the basic data rate requirements of vehicle users and the users requesting the same content in close proximity can be organized into the same receiving group to share the same mmWave beam. The simulation results show that the EFML scheme improves both the network energy efficiency and the amount data of cellular-assisted vehicular networks at the cost of more beam performance update overhead. However, there is no difference in the cost of updating beam performance after adequate online learning.


Author(s):  
Jinsong Gui ◽  
Yao Liu

AbstractMillimeter Wave (mmWave) technology has been regarded as a feasible approach for future vehicular communications. Nevertheless, high path loss and penetration loss raise severe questions on mmWave communications. These problems can be mitigated by directional communication, which is not easy to achieve in highly dynamic vehicular communications. The existing works addressed the beam alignment problem by designing online learning-based mmWave beam selection schemes, which can be well adapted to high dynamic vehicular scenarios. However, this kind of work focuses on network throughput rather than network energy efficiency, which ignores the consideration of energy consumption. Therefore, we propose an Energy efficiency-based FML (EFML) scheme to compensate for this shortfall. In EFML, the energy consumption is reduced as far as possible under the premise of meeting the basic data rate requirements of vehicle users, and the users requesting the same content in close proximity can be organized into the same receiving group to share the same mmWave beam. The simulation results demonstrate that, compare with the comparison method with best energy efficiency, the proposed EFML improves energy efficiency by 17–41% in different scenarios.



2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Jinsong Gui ◽  
Yao Liu ◽  
Xiaoheng Deng ◽  
Bin Liu

Directional communication is helpful to improve the performance of millimeter Wave (mmWave) links. However, the dynamic nature of vehicular scenarios raises the complexity of directional mmWave vehicular communications. Also, a mmWave link is susceptible to blockages. Therefore, a mmWave vehicular communication system requires high environmental adaptability and context-awareness. Due to inadequate context information and insufficient beam settings in the existing related algorithm, it is difficult to pick out the set of beams with more reasonable widths and directions, which hinders the further promotion of network capacity in vehicular networks. Therefore, we propose an improved fast machine learning (IFML) algorithm to overcome this shortcoming. In order to improve network capacity while suppressing the additional beam search overhead, a partitioned search method is designed in the IFML. Also, in order to be robust to occasional fluctuations and timely adapt to significant changes in communication environments, the IFML adopts a flexible beam performance update approach based on adjustable weight coefficient. The simulation results show that the IFML significantly outperforms the existing related algorithm in terms of aggregate received data after a certain number of online learning time periods.



Author(s):  
Yuriy Spirin ◽  
Vladimir Puntusov

In the Kaliningrad region there are about 70 % of all polder lands in Russia. On these lands with high potential fertility, it is advisable to intensive agriculture. The area for the average moisture year is an area with excessive moisture, which indicates the need to maintain the rate of drainage on agricultural land. Many different factors play a role in ensuring the drainage rate, one of which is pumping stations and pumping equipment installed on them. An important parameter in the use of pump-power equipment is energy consumption, since in this industry it is a considerable expense item. Improving the energy efficiency of pumping stations on polders is a pressing issue today. At the majority of polder pumping stations, domestic power pumping equipment is installed with excess power and head of 4–8 meters, and a new one is selected based on the maximum possible head in a given place. In the Kaliningrad region, the energy efficiency of polder pumping equipment has never been analyzed. In this paper, a statistical processing of the geodesic pressure of water at the polder pumping stations of the Slavsk region for 2000–2002 was carried out. On the basis of these data and data on the hydraulic characteristics of pressure pipelines, the calculated water pressures were determined for the rational selection of pumping equipment. The calculation of the economic efficiency of pumps with optimal power compared with pumps of excess capacity. The results of the study can serve as a justification for the transition to the pumping equipment with less power and pressure, which will lead to a decrease in the cost of money for electricity.



2021 ◽  
pp. 1-1
Author(s):  
M. A. Gutierrez-Estevez ◽  
Martin Kasparick ◽  
Slawomir Stanczak
Keyword(s):  


Author(s):  
Xiuhua Fu ◽  
Tian Ding ◽  
Rongqun Peng ◽  
Cong Liu ◽  
Mohamed Cheriet

AbstractThis paper studies the communication problem between UAVs and cellular base stations in a 5G IoT scenario where multiple UAVs work together. We are dedicated to the uplink channel modeling and the performance analysis of the uplink transmission. In the channel model, we consider the impact of 3D distance and multi-UAVs reflection on wireless signal propagation. The 3D distance is used to calculate the path loss, which can better reflect the actual path loss. The power control factor is used to adjust the UAV's uplink transmit power to compensate for different propagation path losses, so as to achieve precise power control. This paper proposes a binary exponential power control algorithm suitable for 5G networked UAV transmitters and presents the entire power control process including the open-loop phase and the closed-loop phase. The effects of power control factors on coverage probability, spectrum efficiency and energy efficiency under different 3D distances are simulated and analyzed. The results show that the optimal power control factor can be found from the point of view of energy efficiency.



Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 64 ◽  
Author(s):  
Fidel Rodríguez-Corbo ◽  
Leyre Azpilicueta ◽  
Mikel Celaya-Echarri ◽  
Peio López-Iturri ◽  
Imanol Picallo ◽  
...  

With the growing demand of vehicle-mounted sensors over the last years, the amount of critical data communications has increased significantly. Developing applications such as autonomous vehicles, drones or real-time high-definition entertainment requires high data-rates in the order of multiple Gbps. In the next generation of vehicle-to-everything (V2X) networks, a wider bandwidth will be needed, as well as more precise localization capabilities and lower transmission latencies than current vehicular communication systems due to safety application requirements; 5G millimeter wave (mmWave) technology is envisioned to be the key factor in the development of this next generation of vehicular communications. However, the implementation of mmWave links arises with difficulties due to blocking effects between mmWave transceivers, as well as different channel impairments for these high frequency bands. In this work, the mmWave channel propagation characterization for V2X communications has been performed by means of a deterministic in-house 3D ray launching simulation technique. A complex heterogeneous urban scenario has been modeled to analyze the different propagation phenomena of multiple mmWave V2X links. Results for large and small-scale propagation effects are obtained for line-of-sight (LOS) and non-LOS (NLOS) trajectories, enabling inter-data vehicular comparison. These analyzed results and the proposed methodology can aid in an adequate design and implementation of next generation vehicular networks.



2020 ◽  
Author(s):  
J. Fajardo ◽  
D. Yabrudy ◽  
D. Barreto ◽  
C. Negrete ◽  
B. Sarria ◽  
...  

Abstract Nowadays, maintenance is based on the synergistic integration of operational reliability and timely maintenance, which guarantees the required availability and optimal cost. Operational reliability implies producing more, better performance, longer life, and availability. Timely maintenance involves the least time out of service, fewer maintenance costs, fewer operating costs, and less money. In this work, we study the preheating train of a crude distillation unit of a refinery, which processes 994 m3/h, which presents a formation of a fouling layer inside it. Among the impacts of fouling is the reduction in the effectiveness of heat transfer, the increase in fuel consumption, the increase in CO2 emissions, the increase in maintenance costs, and the decrease in the profit margin of process. An appropriate cleaning program of the surface of the heat exchanger network is necessary to preserve its key performance parameters, preferably close to design values. This paper presents the maintenance method centered on energy efficiency, to plan the intervention of the preheating train equipment maintenance, which considers the economic energy improvement and the cost of the type of maintenance. The method requires the calculation of the fouling evolution from which the global heat transfer coefficient is obtained, and the heat flux is determined as a function of time. It was observed that, as time passes, the resistance provided by fouling increases and that the overall heat transfer coefficient decreases. The energy efficiency centered maintenance has an indicator of economic justification (factor J) that relates the economic-energy improvement achieved when performing maintenance, taking into account the economic effort invested. Depending on the cost of the type of maintenance to be performed, a threshold should be chosen, from which the maintenance activity is justified. The effectiveness values of the heat exchanger (ε) and the J indicator are used to form a criticality matrix, which allows prioritizing maintenance activities in each equipment. The planning of the implementation dates of the maintenance of each heat exchanger, from the maintenance method centered on energy efficiency applied to the crude distillation unit’s, preheat train, constitutes a contribution in this specific field. The conceptual design of the maintenance method centered on energy efficiency presented in this work is feasible for other heat transfer equipment used in oil refineries and industry in general. The procedure developed uses real operation values, and with its implementation, a saving of 150000 US dollars was achieved.



Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Roy Nitzsche ◽  
Hendrik Etzold ◽  
Marlen Verges ◽  
Arne Gröngröft ◽  
Matthias Kraume

Hemicellulose and its derivatives have a high potential to replace fossil-based materials in various high-value-added products. Within this study, two purification cascades for the separation and valorization of hemicellulose and its derived monomeric sugars from organosolv beechwood hydrolyzates (BWHs) were experimentally demonstrated and assessed. Purification cascade 1 included hydrothermal treatment for converting remaining hemicellulose oligomers to xylose and the purification of the xylose by nanofiltration. Purification cascade 2 included the removal of lignin by adsorption, followed by ultrafiltration for the separation and concentration of hemicellulose. Based on the findings of the experimental work, both cascades were simulated on an industrial scale using Aspen Plus®. In purification cascade 1, 63% of the oligomeric hemicellulose was hydrothermally converted to xylose and purified by nanofiltration to 7.8 t/h of a xylose solution with a concentration of 200 g/L. In purification cascade 2, 80% of the lignin was removed by adsorption, and 7.6 t/h of a purified hemicellulose solution with a concentration of 200 g/L was obtained using ultrafiltration. The energy efficiency of the cascades was 59% and 26%, respectively. Furthermore, the estimation of specific production costs showed that xylose can be recovered from BWH at the cost of 73.7 EUR/t and hemicellulose at 135.1 EUR/t.



2019 ◽  
Vol 8 (2) ◽  
pp. 6527-6534

Massive Multi-Input and Multi-Output (MIMO) antenna system potentially provides a promising solution to improve energy efficiency (EE) for 5G wireless systems. The aim of this paper is to enhance EE and its limiting factors are explored. The maximum EE of 48 Mbit/Joule was achieved with 15 user terminal (UT)s. This problem is related to the uplink spectral efficiency with upper bound for future wireless networks. The maximal EE is obtained by optimizing a number of base station (BS) antennas, pilot reuse factor, and BSs density. We presented a power consumption model by deriving Shannon capacity calculations with closed-form expressions. The simulation result highlights the EE maximization with optimizing variables of circuit power consumption, hardware impairments, and path-loss exponent. Small cells achieve high EE and saturate to a constant value with BSs density. The MRC scheme achieves maximum EE of 36 Mbit/Joule with 12 UTs. The simulation results show that peak EE is obtained by deploying massive BS antennas, where the interference and pilot contamination are mitigated by coherent processing. The simulation results were implemented by using MATLAB 2018b.



Author(s):  
Slagjana Stojanovska ◽  
Violeta Madzova ◽  
Biljana Gjozinska

This paper aims to provide a comparative analysis of private demand for innovation in the context of the ex-YU countries such as Slovenia, Croatia, Serbia and Macedonia from 2011 to 2016. One key variable for the importance of demand for innovation is the buyer sophistication. This signals the ability of buyers to select products and services based on performance rather than price and to bear the cost of products at the beginning of the life cycle. The companies that face a sophisticated domestic market are likely to sell high quality products and a close proximity to such consumers should to enables the company to better understand the needs and desires of the customers and how they perceive the value of the product. For cultural or historical reasons, buyers may be more demanding in some countries than in others. Hence, оur start point is that “higher degrees of buyer sophistication can to explain higher shares of innovative sales” (Hollanders and Es-Sadki, 2017, p. 42) and opposite “lower shares of innovative sales could to explain lower degrees of buyer sophistication” in the above countries. Thus, our analysis relies on two key indicators, the “buyer sophistication” and the “sales of new-to-market and new-to-firm product innovations”, which are including, the first in the Global Competitiveness Report and the second, in the European Innovation Scoreboard. Looking at the results, it can be noted that Serbia has a big gap between the two indicators, so the extent of buyer sophistication is lower from the extent of innovative sales. Аs business leaders make a subjective assessment of the GCR’s indicator Buyer sophistication, it can be assumed that Serbian business leaders assess the sophistication of domestic customers much lower than it is. This example is somewhat similar to the Slovenian business leaders. These two countries achieve the same level of sales of innovative products, while Macedonia and Croatia are in the same group and have lower sales of innovative products. This finding calls for demand-oriented policies which would have to influence the innovation culture in the market, making buyers more risk taking, aware of innovations and empower them to buy and use them.



Sign in / Sign up

Export Citation Format

Share Document