scholarly journals Integrated Transcriptomic and Metabolomic Analyses of the Molecular Mechanisms of Two Highland Barley Genotypes with Differential Pyroxsulam Responses

Author(s):  
Hua Weng ◽  
Jiahui Yan ◽  
Liangzhi Guo ◽  
Hongyu Chen

Abstract Background: Highland barley is one of the few crops that can be grown at high elevations, making it a key resource within the Tibet Plateau. Weeds are a significant threat to highland barley production and new herbicides and tolerant barley varieties are needed to control this ever-growing problem. Results: A better understanding of existing herbicide resistance mechanisms is therefore needed. In this study, transcriptomic and metabolomic analyses were used to identify molecular and physiological changes in two highland barley genotypes with differing sensitivities to pyroxsulam. We identified several stress-responsive metabolites, including flavonoids and antioxidants, which accumulated to significantly higher levels in the pyroxsulam-resistant genotype. Additionally, we found key genes in both the flavonoid biosynthesis pathway and the antioxidant system were up-regulated in pyroxsulam-resistant barley. Conclusions: This work significantly expands on the current understanding of the molecular mechanisms underlying differing pyroxsulam tolerance among barley genotypes and provides several new avenues to explore for breeding or engineering tolerant barley.

2020 ◽  
Vol 11 ◽  
Author(s):  
Ying Guo ◽  
Tongli Wang ◽  
Fang-Fang Fu ◽  
Yousry A. El-Kassaby ◽  
Guibin Wang

Ginkgo (Ginkgo biloba L.) is a high-value medicinal tree species characterized by its flavonoids beneficial effects that are abundant in leaves. We performed a temporospatial comprehensive transcriptome and metabolome dynamics analyses of clonally propagated Ginkgo plants at four developmental stages (time: May to August) across three different environments (space) to unravel leaves flavonoids biosynthesis variation. Principal component analysis revealed clear gene expression separation across samples from different environments and leaf-developmental stages. We found that flavonoid-related metabolism was more active in the early stage of leaf development, and the content of total flavonoid glycosides and the expression of some genes in flavonoid biosynthesis pathway peaked in May. We also constructed a co-expression regulation network and identified eight GbMYBs and combining with other TF genes (3 GbERFs, 1 GbbHLH, and 1 GbTrihelix) positively regulated the expression of multiple structural genes in the flavonoid biosynthesis pathway. We found that part of these GbTFs (Gb_11316, Gb_32143, and Gb_00128) expressions was negatively correlated with mean minimum temperature and mean relative humidity, while positively correlated with sunshine duration. This study increased our understanding of the molecular mechanisms of flavonoids biosynthesis in Ginkgo leaves and provided insight into the proper production and management of Ginkgo commercial plantations.


2020 ◽  
Vol 20 (10) ◽  
pp. 886-907 ◽  
Author(s):  
Ankur Vaidya ◽  
Shweta Jain ◽  
Sanjeev Sahu ◽  
Pankaj Kumar Jain ◽  
Kamla Pathak ◽  
...  

Traditional cancer treatment includes surgery, chemotherapy, radiotherapy and immunotherapy that are clinically beneficial, but are associated with drawbacks such as drug resistance and side effects. In quest for better treatment, many new molecular targets have been introduced in the last few decades. Finding new molecular mechanisms encourages researchers to discover new anticancer agents. Exploring the mechanism of action also facilitates anticipation of potential resistance mechanisms and optimization of rational combination therapies. The write up describes the leading molecular mechanisms for cancer therapy, including mTOR, tyrosine Wee1 kinase (WEE1), Janus kinases, PI3K/mTOR signaling pathway, serine/threonine protein kinase AKT, checkpoint kinase 1 (Chk1), maternal embryonic leucine-zipper kinase (MELK), DNA methyltransferase I (DNMT1), poly (ADP-ribose) polymerase (PARP)-1/-2, sphingosine kinase-2 (SK2), pan-FGFR, inhibitor of apoptosis (IAP), murine double minute 2 (MDM2), Bcl-2 family protein and reactive oxygen species 1 (ROS1). Additionally, the manuscript reviews the anticancer drugs currently under clinical trials.


2021 ◽  
Vol 22 (13) ◽  
pp. 7129
Author(s):  
Desalegn D. Serba ◽  
Xiaoxi Meng ◽  
James Schnable ◽  
Elfadil Bashir ◽  
J. P. Michaud ◽  
...  

The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) (SCA), has become a major pest of grain sorghum since its appearance in the USA. Several grain sorghum parental lines are moderately resistant to the SCA. However, the molecular and genetic mechanisms underlying this resistance are poorly understood, which has constrained breeding for improved resistance. RNA-Seq was used to conduct transcriptomics analysis on a moderately resistant genotype (TAM428) and a susceptible genotype (Tx2737) to elucidate the molecular mechanisms underlying resistance. Differential expression analysis revealed differences in transcriptomic profile between the two genotypes at multiple time points after infestation by SCA. Six gene clusters had differential expression during SCA infestation. Gene ontology enrichment and cluster analysis of genes differentially expressed after SCA infestation revealed consistent upregulation of genes controlling protein and lipid binding, cellular catabolic processes, transcription initiation, and autophagy in the resistant genotype. Genes regulating responses to external stimuli and stress, cell communication, and transferase activities, were all upregulated in later stages of infestation. On the other hand, expression of genes controlling cell cycle and nuclear division were reduced after SCA infestation in the resistant genotype. These results indicate that different classes of genes, including stress response genes and transcription factors, are responsible for countering the physiological effects of SCA infestation in resistant sorghum plants.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Shu-Shun Li ◽  
Qian-Zhong Li ◽  
Li-Ping Rong ◽  
Ling Tang ◽  
Bo Zhang

Acer palmatumThunb., like other maples, is a widely ornamental-use small woody tree for leaf shapes and colors. Interestingly, we found a yellow-leaves mutant “Jingling Huangfeng” turned to green when grown in shade or low-density light condition. In order to study the potential mechanism, we performed high-throughput sequencing and obtained 1,082 DEGs in leaves grown in different light conditions that result inA. palmatumsignificant morphological and physiological changes. A total of 989 DEGs were annotated and clustered, of which many DEGs were found associating with the photosynthesis activity and pigment synthesis. The expression of CHS and FDR gene was higher while the expression of FLS gene was lower in full-sunlight condition; this may cause more colorful substance like chalcone and anthocyanin that were produced in full-light condition, thus turning the foliage to yellow. Moreover, this is the first available miRNA collection which contains 67 miRNAs ofA. palmatum, including 46 conserved miRNAs and 21 novel miRNAs. To get better understanding of which pathways these miRNAs involved, 102 Unigenes were found to be potential targets of them. These results will provide valuable genetic resources for further study on the molecular mechanisms ofAcer palmatumleaf coloration.


2019 ◽  
Author(s):  
Rahmatullah Jan ◽  
Sajjad Asaf ◽  
Sanjita Paudel ◽  
Sangkyu Lee ◽  
Kyung-Min Kim

AbstractKaempferol and quercetin are the essential plant secondary metabolites that confer huge biological functions in the plant defense system. These metabolites are produced in low quantities in plants, therefore engineering microbial factory is a favorable strategy for the production of these metabolites. In this study, biosynthetic pathways for kaempferol and quercetin were constructed in Saccharomyces cerevisiae using naringenin as a substrate. The results elucidated a novel step for the first time in kaempferol and quercetin biosynthesis directly from naringenin catalyzed by flavonol 3-hydroxylase (F3H). F3H gene from rice was cloned into pRS42K yeast episomal plasmid (YEP) vector using BamH1 and Xho1 restriction enzymes. We analyzed our target gene activity in engineered and in empty strains. The results were confirmed through TLC followed by Western blotting, nuclear magnetic resonance (NMR), and LC-MS. TLC showed positive results on comparing both compounds extracted from the engineered strain with the standard reference. Western blotting confirmed lack of Oryza sativa flavonol 3-hydroxylase (OsF3H) activity in empty strains while high OsF3H expression in engineered strains. NMR spectroscopy confirmed only quercetin, while LCMS-MS results revealed that F3H is responsible for naringenin conversion to both kaempferol and quercetin. These results concluded that rice F3H catalyzes naringenin metabolism via hydroxylation and synthesizes kaempferol and quercetin.HighlightsCurrent study is a discovery of a novel step in flavonoid biosynthesis pathway of rice plant.In this study F3H gene from rice plant was functionally expressed in yeast expression system.Results confirmed that, F3H gene is responsible for the canalization of naringenin and converted into kaempferol and quercetin.The results were confirmed through, western blotting, TLC, HPLC and NMR analysis.


2021 ◽  
Vol 12 (1) ◽  
pp. 349-356
Author(s):  
Satish Kumar Sharma ◽  
Shmmon Ahmad

Bacterial biofilm has been a major contributor to severe bacterial infections in humans. Oral infections have also been associated with biofilm-forming microbes. Several antimicrobial strategies have been developed to combat bacterial biofilms. However, the complexity of the oral cavity has made it difficult to use common drug treatments. Most effective ways to control normal bacterial infections are rendered ineffective for bacterial biofilms. Due to limited drug concentration availability, drug neutralization or altered phenotype of bacterial cells, different drug have been ineffective to identify the target cells. This leads to the development of the multifaceted phenomenon of antimicrobial resistance (AMR). Biofilm research done so far has been focused on using antimicrobial drugs to target molecular mechanisms of cells. The severity and resistance mechanisms of extracellular matrix (ECM) have been underestimated. The present study describes different antimicrobial strategies with respect to their applications in dental or oral infections. A prospective strategy has been proposed targeting ECM which is expected to provide an insight on biofilm obstinacy and antimicrobial resistance.


Weed Science ◽  
2010 ◽  
Vol 58 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Joshua S. Yuan ◽  
Laura L. G. Abercrombie ◽  
Yongwei Cao ◽  
Matthew D. Halfhill ◽  
Xin Zhou ◽  
...  

The evolution of glyphosate resistance in weedy species places an environmentally benign herbicide in peril. The first report of a dicot plant with evolved glyphosate resistance was horseweed, which occurred in 2001. Since then, several species have evolved glyphosate resistance and genomic information about nontarget resistance mechanisms in any of them ranges from none to little. Here, we report a study combining iGentifier transcriptome analysis, cDNA sequencing, and a heterologous microarray analysis to explore potential molecular and transcriptomic mechanisms of nontarget glyphosate resistance of horseweed. The results indicate that similar molecular mechanisms might exist for nontarget herbicide resistance across multiple resistant plants from different locations, even though resistance among these resistant plants likely evolved independently and available evidence suggests resistance has evolved at least four separate times. In addition, both the microarray and sequence analyses identified non–target-site resistance candidate genes for follow-on functional genomics analysis.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Benjamin Jaegle ◽  
Miran Kalle Uroic ◽  
Xu Holtkotte ◽  
Christina Lucas ◽  
Andreas Ole Termath ◽  
...  

2021 ◽  
pp. 1-9

1. Abstract Insulin Resistance is the leading cause of Type 2 diabetes mellitus [T2DM] onset. It occurs as a result of disturbances in lipid metabolism and increased levels of circulating free fatty acids [FFAs]. FFAs accumulate within the insulin sensitive tissues such as muscle, liver and adipose tissues exacerbating different molecular mechanisms. Increased fatty acid flux has been documented to be strongly associated with insulin resistant states and obesity causing inflammation that eventually causes type 2-diabetes development. FFAs appear to cause this defect in glucose transport by inhibiting insulin –stimulated tyrosine phosphorylation of insulin receptor substrate-1 [IRS-1] and IRS-1 associated phosphatidyl-inositol 3-kinase activity. A number of different metabolic abnormalities may increase intramyocellular or intrahepatic fatty acid metabolites that induce insulin resistance through different cellular mechanisms. The current review point out the link between enhanced FFAs flux and activation of PKC and how it impacts on both the insulin signaling in muscle and liver as shown from our laboratory data and highlighting the involvement of the inflammatory pathways importance. This embarks the importance of measuring the inflammatory biomarkers in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document