scholarly journals The cryptic seismic potential of blind faults revealed by off-fault geomorphology, Pichilemu, Chile.

2020 ◽  
Author(s):  
Julius Jara-Muñoz ◽  
Daniel Melnick ◽  
Anne Socquet ◽  
Joaquin Cortés-Aranda ◽  
Dominik Brill ◽  
...  

Abstract In seismically-active regions, mapping capable faults and estimating their recurrence time is the first step to assess seismic hazards. Fault maps are commonly based on geologic and geomorphic features evident at the surface; however, mapping blind faults and estimating their seismic potential is challenging because on-fault diagnostic features are absent. Here, we study the Pichilemu Fault in coastal Chile, unknown until it generated a M7.0 earthquake in 2010. The lack of evident surface faulting suggests a partly-hidden blind fault. Using off-fault deformed marine terraces, we estimate a slip-rate of 0.42 ± 0.04 m/ka, which when integrated with deformation estimated from satellite geodesy during the 2010 earthquake suggests a 2.5 ± 0.25 ka recurrence time for M6.6-6.9 extensional earthquakes. We propose that extension is associated with stress changes during megathrust earthquakes and accommodated by sporadic slip during upper-plate earthquakes. Our results have implications for assessing the seismic potential of cryptic faults along seismically-active coasts.

2020 ◽  
Author(s):  
Daniel Melnick ◽  
Valentina Maldonado ◽  
Martin Contreras ◽  
Julius Jara-Muñoz ◽  
Joaquín Cortés-Aranda ◽  
...  

<p>Most of the seismic hazard along subduction zones is posed by great tsunamigenic earthquakes associated with the interplate megathrust fault. However, crustal faults are ubiquitous along overriding continental plates, some of which have been triggered during recent megathrust earthquakes. In Chile, the 2010 Maule earthquake (M8.8) triggered a shallow M7 earthquake on the Pichilemu fault, which had not been mapped and was unknown. In fact, M~7 earthquakes have recently occurred along unknown faults in California and New Zealand, emphasizing the need for better and more detailed mapping initiatives. A first step towards a synoptic assessment of seismic hazards posed by continental faults at the national level is mapping at a homogeneous scale to allow for a systematic comparison of faults and fault systems. Here, we present the first map of active and potentially-active faults in Chile at 1:25,000 scale, which includes published studies and newly-identified faults. All the published faults have been re-mapped using LiDAR and TanDEM-X topography, where available. Using different scaling relations, we estimate the seismic potential of all crustal faults in Chile. For specific faults where we have conducted paleoseismic and tectonic geomorphic field studies (e.g., Liquiñe-Ofqui, El Yolki, Mesamavida, and Pichilemu faults) we provide new estimates of slip rate, recurrence interval, and deformation style. We propose a segmentation model of continental faults systems in Chile, which are associated with distinct morphotectonic units and have predominant kinematics and relatively uniform slip rates. Using stress transfer models, we explore the potential feedbacks between upper-plate deformation and the megathrust seismic cycle.</p>


2008 ◽  
Vol 02 (04) ◽  
pp. 267-277 ◽  
Author(s):  
WIN SWE ◽  
SOE THURA TUN

Wave-cut platforms, uplifted marine terraces, and areas of subsidence are among the most striking geomorphic features along some parts of the Myanmar coast. Depending on the local tectonic setting, processes of development of terraces of the Myanmar coast can be classified into at least three categories viz. (i) uplifting of wave-cut platforms or intertidal deposits by megathrust earthquakes, (ii) growth of prodelta sandbars where tectonic signatures, should they ever form, are overwhelmed by rapid sedimentation, and (iii) uplifting of wave-cut platforms or intertidal deposits developed in strike-slip related sigmoidal basins on the coast by strike-slip tectonic activity. Some of the higher flat areas behind those on or close to the shore could probably belong to the fourth category that is lowering of the sea level during the last glacial ages in Pleistocene time. Many of these terraces are still not yet properly studied, hence should be carried out.


2022 ◽  
Author(s):  
Muhammad Taufiq Rafie ◽  
David P. Sahara ◽  
Phil R. Cummins ◽  
Wahyu Triyoso ◽  
Sri Widiyantoro

Abstract The seismically active Sumatra subduction zone has generated some of the largest earthquakes in the instrumental record, and both historical accounts and paleogeodetic coral studies indicate such activity has historical recorded megathrust earthquakes and transferred stress to the surrounding, including the Great Sumatran Fault (GSF). Therefore, evaluating the stress transfer from these large subduction earthquakes could delineate the highly stressed area as potential-earthquake region along the GSF. In this study, we investigated eight megathrust earthquakes from 1797 to 2010 and resolved the accumulated Coulomb stress changes onto the 18 segments along the GSF. Additionally, we also estimated the rate of tectonic stress on the GSF segments which experienced large earthquake using the case of: (1) no sliver movement and (2) with sliver movement. Based on the historical stress changes of large earthquakes and the increase in tectonic stress rate, we analysed the historical stress changes time evolution on the GSF. The Coulomb stress accumulation of megathrust earthquakes between 1797-1907 increase the stress changes mainly on the southern part of GSF which followed by four major events between 1890-1943. The estimation of tectonic stress rates using case (1) produces low rate and long recurrence intervals which implies that the megathrust earthquakes plays an important role in allowing the GSF earthquake to occur. When implementing the arc-parallel sliver movement of case (2) to the calculation, the tectonic stress rates is 9 to 58 times higher than case (1) of no sliver movement. The observed slip rate of 15-16 mm/yr at the GSF is consistent with the recurrence interval for full-segment rupture of 100-200 years obtained from case (2). This suggests that the GSF earthquake is more controlled by the rapid arc-parallel forearc sliver motion. Furthermore, the analysis of stress changes time evolution model shows that some segments such as Tripa (North and South), Angkola, Musi and Manna appear to be brought back in their seismic cycles since these segments have experienced full-segment rupture and likely locked, increasing their earthquake hazard potentials.


2020 ◽  
Author(s):  
Valère Lambert ◽  
Nadia Lapusta

Abstract. Substantial insight into earthquake source processes has resulted from considering frictional ruptures analogous to cohesive-zone shear cracks from fracture mechanics. This analogy holds for slip-weakening representations of fault friction that encapsulate the resistance to rupture propagation in the form of breakdown energy, analogous to fracture energy, prescribed in advance as if it were a material property of the fault interface. Here, we use numerical models of earthquake sequences with enhanced weakening due to thermal pressurization of pore fluids to show how accounting for thermo-hydro-mechanical processes during dynamic shear ruptures makes breakdown energy rupture-dependent. We find that local breakdown energy is neither a constant material property nor uniquely defined by the amount of slip attained during rupture, but depends on how that slip is achieved through the history of slip rate and dynamic stress changes during the rupture process. As a consequence, the frictional breakdown energy of the same location along the fault can vary significantly in different earthquake ruptures that pass through. These results suggest the need for re-examining the assumption of pre-determined frictional breakdown energy common in dynamic rupture modeling and for better understanding of the factors that control rupture dynamics in the presence of thermo-hydro-mechanical processes.


2019 ◽  
Vol 7 (1) ◽  
pp. 321-344 ◽  
Author(s):  
Raphaël Normand ◽  
Guy Simpson ◽  
Frédéric Herman ◽  
Rabiul Haque Biswas ◽  
Abbas Bahroudi ◽  
...  

Abstract. The western part of the Makran subduction zone (Iran) is currently experiencing active surface uplift, as attested by the presence of emerged marine terraces along the coast. To better understand the uplift recorded by these terraces, we investigated seven localities along the Iranian Makran and we performed radiocarbon, 230Th∕U and optically stimulated luminescence (OSL) dating of the layers of marine sediments deposited on top of the terraces. This enabled us to correlate the terraces regionally and to assign them to different Quaternary sea-level highstands. Our results show east–west variations in surface uplift rates mostly between 0.05 and 1.2 mm yr−1. We detected a region of anomalously high uplift rate, where two MIS 3 terraces are emerged, but we are uncertain how to interpret these results in a geologically coherent context. Although it is presently not clear whether the uplift of the terraces is linked to the occurrence of large megathrust earthquakes, our results highlight rapid surface uplift for a subduction zone context and heterogeneous accumulation of deformation in the overriding plate.


2018 ◽  
Author(s):  
Raphaël Normand ◽  
Guy Simpson ◽  
Frédéric Herman ◽  
Rabiul Haque Biswas ◽  
Abbas Bahroudi ◽  
...  

Abstract. The western part of the Makran subduction zone (Iran) has not experienced a great megathrust earthquake in recent human history, yet, the presence of emerged marine terraces along the coast indicates that the margin has been tectonically active during at least the late Quaternary. To better understand the surface deformation of this region, we mapped the terraces sequences of seven localities along the Iranian Makran. Additionnaly, we performed radiocarbon, 230Th/U and optically stimulated luminescence (OSL) dating of the layers of marine sediments deposited on top of the terraces. This enabled us to correlate the terraces regionally and to assign them to different Quaternary sea level highstands. Our results show east-west variations in surface uplift rates mostly between 0.05 and 1.2 mm y−1. We detected a region of anomalously high uplift rate, where two MIS 3 terraces are emerged, yet we are uncertain how to insert these results in a geologically coherent context. Although it is presently not clear whether the uplift of the terraces is linked with the occurrence of large megathrust earthquakes, our results highlight heterogeneous accumulation of deformation in the overriding plate.


2020 ◽  
Author(s):  
Sara Carena ◽  
Alessandro Verdecchia ◽  
Alessandro Valentini ◽  
Bruno Pace

<p>The 2019 M 6.4 Searles Valley and the M 7.1 Ridgecrest earthquakes occurred in the Eastern California Shear Zone (ECSZ) between the southern tip of the Owens Valley fault and the central segment of the Garlock fault. This earthquake sequence, as shown by recent studies based on cumulative (coseismic plus postseismic) Coulomb stress (ΔCFS) modeling, is likely to have been influenced by previous earthquakes in the ECSZ, reinforcing the hypothesis that the spatial and temporal distribution of major earthquakes in this region is controlled by the location and timing of past events. In turn, the 2019 Ridgecrest sequence has likely reshaped the state of stress on neighbouring faults, and as a consequence modified the probability of occurrence of future events in the region.</p><p>Here, focusing on the Garlock fault, we calculate the cumulative ΔCFS due to several major (M ≥ 7) earthquakes which occurred in the ECSZ and surrounding areas (e.g. San Andreas fault) following the most recent event on the Garlock fault (A.D. 1450-1640), and up to and including the Ridgecrest sequence. We then use these results to evaluate the influence of stress changes due to past earthquakes on a probabilistic seismic hazard model for the Garlock fault.</p><p>In our first probabilistic model, we calculate BPT (Brownian Passage Time) curves of occurrence of a M ≥ 7 event on the central segment of the Garlock fault in the next 30 years, using recurrence time and coefficient of variation values calculated from paeloseismological data. Preliminary results show a probability of occurrence in 30 years of up to 10% when we do not consider the effect of ΔCFS. This increases to about 15% when ΔCFS effects are introduced in the model.</p><p>As a next step, we will implement a more complex segmented model for the Garlock fault, where probability calculations take into account multiple possible rupture combinations.</p>


2021 ◽  
Author(s):  
◽  
Dee Ninis

<p>At the southern Hikurangi margin, the subduction interface between the Australian and Pacific plates, beneath the southern North Island of New Zealand, is ‘locked’. It has previously been estimated that sudden slip on this locked portion of the interface could result in a subduction zone or ‘megathrust’ earthquake of Mw 8.0-8.5 or larger. Historically, however, no significant (>Mw 7.2) subduction interface earthquake has occurred at the southern Hikurangi margin, and the hazard from subduction earthquakes to this region, which includes New Zealand’s capital city of Wellington, remains largely unknown.  Patterns of uplift at active margins can provide insight into subduction processes, including megathrust earthquakes. With the objectives to i) contribute to the understanding of partitioning of margin-parallel plate motion on to upper plate faults, and ii) provide insight into the relationship of permanent vertical deformation to subduction processes at the southern end of the Hikurangi margin, I investigate flights of late Pleistocene fluvial and marine terraces preserved across the lower North Island. Such geomorphic features, when constrained by numerical dating, provide a valuable set of data with which to quantify tectonic deformation - be they locally offset by a fault, or collectively uplifted across the margin.  Fault-offset fluvial terraces along the Hutt River, near Wellington, record dextral slip for the southern part of the Wellington Fault. From re-evaluated fault displacement measurements and new Optically Stimulated Luminescence (OSL) data, I estimate an average slip rate of 6.3 ± 1.9/1.2 mm/yr (2σ) during the last ~100 ka. However, slip on the Wellington Fault has not been steady throughout this time. During the Holocene, there was a phase of heightened ground rupture activity between ~8 and 10 ka, a period of relative quiescence between ~4.5 and 8 ka, and another period of heightened activity during the last ≤ 4.5 ka. Moreover, these results agree with independent paleoseismological evidence from other sites along the Wellington Fault for the timing of ground rupture events. The time-varying activity observed on the Wellington Fault may be regulated by stress interactions with other nearby upper plate active faults.  Net tectonic uplift of the southern Hikurangi margin is recorded by ancient emergent shore platforms preserved along the south coast of the North Island. I provide a new evaluation of the distribution and age of the Pleistocene marine terraces. Shore platform altitudes are accurately surveyed for the first time using Global Navigational Satellite Systems (GNSS). From these data I have determine the shore platform attitudes where they are preserved along the coast. The terraces are also dated, most for the first time, using OSL techniques. The most extensive Pleistocene terraces formed during Marine Isotope Stages (MIS) 5a, 5c, 5e and 7a. Because the ancient shorelines are now obscured by coverbed deposits, I use shore platform attitudes to reconstruct strandline elevations. These strandline elevations, corrected for sea level during their formative highstands, have been used to quantify rates of uplift across the southern Hikurangi margin.  In the forearc region of the Hikurangi margin, within ~70 km of the trough, uplift observed on the marine terraces along the Palliser Bay coast monotonically decreases away from the trough. The highest uplift rate of 1.7 ± 0.1 mm/yr is observed at the easternmost preserved terrace, near Cape Palliser, about 40 km from Hikurangi Trough. Further to the west, at Lake Ferry, uplift is 0.8 ± 0.1 mm/yr. The lowest rate of uplift, 0.2 ± 0.1 mm/yr, is observed at Wharekauhau, the westernmost marine terrace preserved on the Palliser Bay coast. Overall, the terraces are tilted towards the west, away from the trough, with older terraces exhibiting the most tilting. This long-wavelength pattern of uplift suggests that, in this forearc region of the margin, deep-seated processes, most likely subduction of a buoyant slab in combination with megathrust earthquakes, are the main contributors to permanent vertical deformation.  West of Palliser Bay, at a distance of >70 km from the Hikurangi Trough, vertical offsets on the marine terraces are evident across upper plate faults, most notably the Wairarapa and Ohariu Faults. The uplift rate at Baring Head, west and on the upthrown side of the Wairarapa Fault, is as much as 1.6 ± 0.1 mm/yr. At Tongue Point, where the Ohariu Fault offsets the marine terraces preserved there, uplift calculated from the western, upthrown side of the fault is 0.6 ± 0.1 mm/yr. These uplift rates suggest that, in the Axial Ranges, in addition to sediment underplating, movement on the major active upper plate faults also contributes to rock uplift.</p>


2020 ◽  
Vol 224 (3) ◽  
pp. 2028-2043
Author(s):  
Carla Valenzuela-Malebrán ◽  
Simone Cesca ◽  
Sergio Ruiz ◽  
Luigi Passarelli ◽  
Felipe Leyton ◽  
...  

SUMMARY Seismicity along subduction interfaces is usually dominated by large main-shock–aftershock sequences indicative of a continuum distribution of highly coupled large asperities. In the past decades, however, the increased resolution of seismic catalogues at some subduction zone seems to indicate instead a more complex rheological segmentation of the interface. Large and megathrust earthquake ruptures seem interspersed among regions of low seismic coupling and less stress buildup. In this weaker zone, the strain is primarily released via a combination of moderate-size swarm-like seismicity and aseismic slip. Along the Chilean subduction zone, the densification of the seismic network allowed for the identification of localized seismic clusters, some of them appearing in the form of swarms before megathrust earthquakes. The origin and driving processes of this seismic activity have not yet been identified. In this study, we follow a systematic approach to characterize the seismicity at two persistent clusters in Central Chile, one located offshore Navidad and one inland, at ∼40 km depth beneath Vichuquén, which occurred throughout ∼20 yr. We investigated these clusters, by deriving high-resolution hypocentral locations and moment tensors and performing a detailed analysis of spatio-temporal patterns, magnitude and interevent time distributions of the clustered earthquakes. Both clusters are characterized by weak to moderate seismicity (below Mw 6) and stand out as clear seismicity rate and Benioff strain anomalies. At the Navidad cluster, seismicity occurs in the form of swarms, with a characteristic duration of 2–7 d and location and thrust mechanisms compatible with activity on the slab interface. Conversely, we find at Vichuquén activity dominated by thrust earthquakes occurring as repeaters on the slab interface, with a slip rate of approximately ∼5.0 cm yr−1. We attribute these clusters to local features of the subducting plate: the Navidad swarms are likely driven by repeated high pore pressure transients along a pre-fractured patch of the slab, while the seismicity at the Vichuquén cluster is interpreted as the result of a subducting seamount. Both clusters have been active before and after the Mw 8.8 Maule earthquake and persisted afterwards with the seismicity decay following the Omori law. These interactions are especially evident for the Vichuquén cluster, where the seismicity rate increased considerably after the Maule earthquake and continues to be an area of clearly elevated seismicity rate compared to its surroundings.


1988 ◽  
Vol 78 (2) ◽  
pp. 979-999
Author(s):  
M. Meghraoui ◽  
H. Philip ◽  
F. Albarede ◽  
A. Cisternas

Abstract During the EI Asnam earthquake of 10 October 1980 (Ms = 7.3), a clear active thrust fault with left-lateral offset was observed. Three trenches have been excavated across this fault in order to determine slip rate and recurrence intervals between large earthquakes, and thus reconstruct its past activity. Exposure I was excavated in the flood area created in 1980 by a pressure ridge across the Cheliff and Fodda Rivers. Six flood deposits (silty-sandy and muddy horizons) alternating with paleosoils appear in this exposure; they are affected by normal faults associated with the main thrust fault. Assuming that every flood deposit results from a tectonic event of magnitude greater than 7, we can correlate previous flood deposits with these events. Exposures II and III display thrust faults displacing different paleosoils. We propose a sequence of reconstructions based on the thickness of the various deposits and the dip-slip of each tectonic event. The Late Holocene slip rate is 0.65 mm/yr for the dip-slip and 0.46 mm/yr for each of the horizontal and the vertical movements. Radiocarbon dates of coseismic movements indicate a rather irregular seismic activity during the past 7000 yr. Two sequences of large earthquakes around 4000 yr B.P. and around the modern age are separated with a period of quiescence. The average Late Holocene recurrence interval of large earthquakes is 1061 yr; however, during the active faulting episodes, the recurrence time varies from approximately 300 to 500 yr.


Sign in / Sign up

Export Citation Format

Share Document