scholarly journals PD-1 Suppresses the Osteogenic and Odontogenic Differentiation of Stem Cells From Dental Apical Papilla via Targeting SHP2/NF-κB axis

Author(s):  
Na Li ◽  
Zehan Li ◽  
Lin Fu ◽  
Ming Yan ◽  
Yanqiu Wang ◽  
...  

Abstract BackgroundStem cells from the apical papilla (SCAPs) are important for tooth root development and regeneration of root dentin. Here, we examined the expression of programmed cell death protein-1 (PD-1) in SCAPs and investigated the effect of PD-1 on odontogenic and osteogenic differentiation and the relationship between PD-1 and cell differentiation and SHP2/NF-κB signals.MethodsSCAPs were obtained culture in the related medium. The proliferation ability was evaluated by cell counting kit 8 and 5‐ethynyl‐20‐deoxyuridine (EdU) assay. Alkaline phosphatase (ALP) activity assay, ALP staining, western blot, real-time RT-PCR, Alizarin Red S staining, and immunofluorescence staining were performed to explore the osteo/odontogenic potential and the involvement of SHP2/NF-κB pathways. Besides, we transplanted SCAPs component into mouse calvaria defects to evaluate osteogenesis in vivo. ResultsWe found that human SCAPs expressed PD-1 for the first time. PD-1 knockdown enhanced the osteo/odontogenic differentiation of SCAPs by suppressing SHP2 pathway and activating NF-κB pathway. Overexpression of PD-1 inhibited the osteogenesis and odontogenesis of SCAPs via activation of SHP2 signal and inhibition of NF-κB pathway. ConclusionPD-1 activated SHP2 signal to block NF-κB signal and then played a vital role in osteo/odontogenic differentiation of SCAPs.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xiyao Pang ◽  
Yanqiu Wang ◽  
Jintao Wu ◽  
Zhou Zhou ◽  
Tao Xu ◽  
...  

Yunnan Baiyao is a traditional Chinese herbal remedy that has long been used for its characteristics of wound healing, bone regeneration, and anti-inflammation. However, the effects of Yunnan Baiyao on the odonto/osteogenic differentiation of stem cells from apical papilla (SCAPs) and the potential mechanisms remain unclear. The aim of this study was to investigate the odonto/osteogenic differentiation effects of Yunnan Baiyao on SCAPs and the underlying mechanisms involved. SCAPs were isolated and cocultured with Yunnan Baiyao conditioned media. The proliferation ability was determined by cell counting kit 8 and flow cytometry. The differentiation capacity and the involvement of NF-κB pathway were investigated by alkaline phosphatase assay, alizarin red staining, immunofluorescence assay, real-time RT-PCR, and western blot analyses. Yunnan Baiyao conditioned medium at the concentration of 50 μg/mL upregulated alkaline phosphatase activity, induced more mineralized nodules, and increased the expression of odonto/osteogenic genes/proteins (e.g., OCN/OCN, OPN/OPN, OSX/OSX, RUNX2/RUNX2, ALP/ALP, COL-I/COL-I, DMP1, DSP/DSPP) of SCAPs. In addition, the expression of cytoplasmic phos-IκBα, phos-P65, and nuclear P65 was significantly increased in Yunnan Baiyao conditioned medium treated SCAPs in a time-dependent manner. Conversely, the differentiation of Yunnan Baiyao conditioned medium treated SCAPs was obviously inhibited when these stem cells were cocultured with the specific NF-κB inhibitor BMS345541. Yunnan Baiyao can promote the odonto/osteogenic differentiation of SCAPs via the NF-κB signaling pathway.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Wei Sun ◽  
Fang Zhao ◽  
Yu Xu ◽  
Kai Huang ◽  
Xianling Guo ◽  
...  

Abstract Chondroitin polymerizing factor (CHPF) is an important member of glycosyltransferases involved in the biosynthesis of chondroitin sulfate (CS). However, the relationship between CHPF and malignant melanoma (MM) is still unknown. In this study, it was demonstrated that CHPF was up-regulated in MM tissues compared with the adjacent normal skin tissues and its high expression was correlated with more advanced T stage. Further investigations indicated that the over-expression/knockdown of CHPF could promote/inhibit proliferation, colony formation and migration of MM cells, while inhibiting/promoting cell apoptosis. Moreover, knockdown of CHPF could also suppress tumorigenicity of MM cells in vivo. RNA-sequencing followed by Ingenuity pathway analysis (IPA) was performed for exploring downstream of CHPF and identified CDK1 as the potential target. Furthermore, our study revealed that knockdown of CDK1 could inhibit development of MM in vitro, and alleviate the CHPF over-expression induced promotion of MM. In conclusion, our study showed, as the first time, CHPF as a tumor promotor for MM, whose function was carried out probably through the regulation of CDK1.


2021 ◽  
Vol 30 ◽  
pp. 096368972110574
Author(s):  
Ge Yahao ◽  
Wang Xinjia

Mesenchymal stem cell (MSC) exosomes promote tissue regeneration and repair, and thus might be used to treat many diseases; however, the influence of microenvironmental conditions on exosomes remains unclear. The present study aimed to analyze the effect of osteogenic induction on the functions of human umbilical cord MSC (HucMSC)-derived exosomes. Exosomes from standardized stem cell culture (Exo1) and osteogenic differentiation-exosomes (Exo2) were co-cultured with osteoblasts, separately. Cell counting kit-8 assays, alkaline phosphatase and alizarin red staining were used to observe the exosomes’ effects on osteoblast proliferation and differentiation. The levels of osteogenic differentiation-related proteins were analyzed using western blotting. Estrogen-deficient osteoporosis model mice were established, and treated with the two exosome preparations. Micro-computed tomography and hematoxylin and eosin staining were performed after 6 weeks. MicroRNAs in Exo1 and Exo2 were sequenced and analyzed using bioinformatic analyses. Compared with Exo1 group, Exo2 had a stronger osteogenic differentiation promoting effect, but a weaker proliferation promoting effect. In ovariectomy-induced osteoporosis mice, both Exo1 and Exo2 improved the tibial density and reversed osteoporosis in vivo. High-throughput microRNA sequencing identified 221 differentially expressed microRNAs in HucMSC-derived exosomes upon osteogenic induction as compared with the untreated control group. Importantly, we found that 41 of these microRNAs are potentially critical for MSC-secreted exosomes during osteogenic induction. Mechanistically, exosomal miRNAs derived from osteogenic induced-HucMSCs are involved in bone development and differentiation, such as osteoclast differentiation and the MAPK signaling pathway. The expression of hsa-mir-2110 and hsa-mir-328-3p gradually increased with prolonged osteogenic differentiation and regulated target genes associated with bone differentiation, suggesting that they are probably the most important osteogenesis regulatory microRNAs in exosomes. In conclusion, we examined the contribution of osteogenic induction to the function of exosomes secreted by HucMSCs following osteogenic differentiation in vitro and in vivo, and reveal the underlying molecular mechanisms of exosome action during osteoporosis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yongbing Chen ◽  
Haihua Hong ◽  
Qingqing Wang ◽  
Junqiang Li ◽  
Wenfeng Zhang ◽  
...  

Abstract Background A number of studies have indicated that Ubiquitin-conjugating enzyme E2T (UBE2T), as an oncogene, promotes progression and metastasis of lung cancer, including lung adenocarcinoma (LUAD), but it is completely unknown whether and how UBE2T is ubiquitylated and degraded, and by which E3 ligase. NEDD4L plays a critical role in the regulation of cellular processes of various cancers, most of which is attributed to its E3 ubiquitin ligase function. However, the relationship between NEDD4L and UBE2T in LUAD has not been elucidated. Methods The relationship between NEDD4L and UBE2T in LUAD tissues and cells was found by bioinformatic analyses and immunoblotting. Cell counting kit-8, colony formation assay, half-life analysis and the in vivo ubiquitylation assay, generation of xenograft model were performed to determine how NEDD4L regulates UBE2T and its downstream signaling pathway in vitro and in vivo. Results Bioinformatic analyses found that NEDD4L, as a potential correlation E3 ligase of UBE2T, was negatively correlated with UBE2T in LUAD. Consistently, UBE2T protein half-life was shortened or extended by NEDD4L overexpression or depletion, respectively. NEDD4L inhibited LUAD cell progression in vitro and in vivo via inducing the ubiquitination-mediated UBE2T degradation, which repressed PI3K-AKT signaling. Similarly, NEDD4L predicted a better patient survival, whereas UBE2T predicted a worse survival. Conclusions Collectively, our results reveal that NEDD4L is a novel E3 ligase of UBE2T, which can inhibit PI3K-AKT signaling by targeting for UBE2T ubiquitination and degradation, resulting in repression of LUAD cell progression.


2020 ◽  
Author(s):  
Hongsheng Liu ◽  
Yingzhi Qin ◽  
Na Zhou ◽  
Dongjie Ma ◽  
Yingyi Wang

Abstract Background: Lung cancer is the most commonly diagnosed malignant tumor worldwide. Lung adenocarcinoma (LUAD) is the most common histological subtype in non-small cell lung cancer (NSCLC). The relationship between ZNF280A and LUAD has not been demonstrated and remains unclear. Methods: In this study, it was demonstrated that ZNF280A was upregulated in LUAD tissues compared with the normal tissues. Further investigations indicated that the overexpression/knockdown of ZNF280A could promote/inhibit proliferation, colony formation and migration of LUAD cells, while inhibiting/promoting cell apoptosis. Moreover, knockdown of ZNF280A could also suppress tumorigenicity of LUAD cells in vivo. RNA-sequencing followed by Ingenuity pathway analysis (IPA) was performed for exploring downstream of ZNF280A and identified EIF3C as the potential target. Results: Furthermore, our study revealed that knockdown of EIF3C could inhibit development of LUAD in vitro, and alleviate the ZNF280A overexpression induced promotion of LUAD. Conclusions: In conclusion, our study showed, as the first time, ZNF280A as a tumor promotor for LUAD, whose function was carried out probably through the regulation of EIF3C.


2020 ◽  
Vol 47 (12) ◽  
pp. 1527-1540
Author(s):  
Muhammad Asim Afridi ◽  
Muhammad Tahir ◽  
Aziz Ullah Sayal ◽  
Imran Naseem

PurposeThe African region has experienced relatively lower economic growth and higher outflow of migration over the years. The purpose of this research paper, therefore, is to focus on the African region to investigate whether or not there is any link between the poor economic growth and rising outflow of migration.Design/methodology/approachEmpirical data spanning from 1990 to 2015 are collected from reliable sources for 41 countries belonging to the African region. Appropriate estimating methodology that controls for unobserved heterogeneity both across time and across countries, and endogeneity is employed.FindingsThe results revealed that the migration has adversely influenced the economic growth of the African region as a whole. The splitting of sample into male and female migration also reflected the fact that the unsatisfied economic growth of the African region could be explained by the ever rising migration level. Other determinants such as employment and growth of physical capital have helped the region in the growth journey. Human capital has not played a vital role in economic growth as it is adversely affected by migration. Further, the study found support for the positive impact of moderate inflation on economic growth. The obtained results are robust to alternative methodologies and hence would be beneficial for policymakers.Originality/valueThe present study provides for the first time comprehensive empirical evidence on the relationship between migration and economic growth by focusing on Africa. Therefore, this study would be of prime importance for policymakers.


2019 ◽  
Vol 51 (11) ◽  
pp. 1-16 ◽  
Author(s):  
Wen-Ning Xu ◽  
Huo-Liang Zheng ◽  
Run-Ze Yang ◽  
Tao Liu ◽  
Wei Yu ◽  
...  

AbstractThe main pathological mechanism of intervertebral disc degeneration (IVDD) is the programmed apoptosis of nucleus pulposus (NP) cells. Oxidative stress is a significant cause of IVDD. Whether mitophagy is induced by strong oxidative stress in IVDD remains to be determined. This study aimed to investigate the relationship between oxidative stress and mitophagy and to better understand the mechanism of IVDD in vivo and in vitro. To this end, we obtained primary NP cells from the human NP and subsequently exposed them to TBHP. We observed that oxidative stress induced mitophagy to cause apoptosis in NP cells, and we suppressed mitophagy and found that NP cells were protected against apoptosis. Interestingly, TBHP resulted in mitophagy through the inhibition of the HIF-1α/NDUFA4L2 pathway. Therefore, the upregulation of mitochondrial NDUFA4L2 restricted mitophagy induced by oxidative stress. Furthermore, the expression levels of HIF-1α and NDUFA4L2 were decreased in human IVDD. In conclusion, these results demonstrated that the upregulation of NDUFA4L2 ameliorated the apoptosis of NP cells by repressing excessive mitophagy, which ultimately alleviated IVDD. These findings show for the first time that NDUFA4L2 and mitophagy may be potential therapeutic targets for IVDD.


Author(s):  
Shuiping Liu ◽  
Haoming Lin ◽  
Da Wang ◽  
Qiang Li ◽  
Hong Luo ◽  
...  

Abstract5-Fluorouracil (5-FU) is known as a first-line chemotherapeutic agent against colorectal cancer (CRC), but drug resistance occurs frequently and significantly limits its clinical success. Our previous study showed that the protocadherin 17 (PCDH17) gene was frequently methylated and functioned as a tumor suppressor in CRC. However, the relationship between PCDH17 and 5-FU resistance in CRC remains unclear. Here, we revealed that PCDH17 was more highly expressed in 5-FU-sensitive CRC tissues than in 5-FU-resistant CRC tissues, and high expression of PCDH17 was correlated with high BECN1 expression. Moreover, this expression profile contributed to superior prognosis and increased survival in CRC patients. Restoring PCDH17 expression augmented the 5-FU sensitivity of CRC in vitro and in vivo by promoting apoptosis and autophagic cell death. Furthermore, autophagy played a dominant role in PCDH17-induced cell death, as an autophagy inhibitor blocked cell death to a greater extent than the pancaspase inhibitor Z-VAD-FMK. PCDH17 inhibition by siRNA decreased the autophagy response and 5-FU sensitivity. Mechanistically, we showed that c-Jun NH2-terminal kinase (JNK) activation was a key determinant in PCDH17-induced autophagy. The compound SP600125, an inhibitor of JNK, suppressed autophagy and 5-FU-induced cell death in PCDH17-reexpressing CRC cells. Taken together, our findings suggest for the first time that PCDH17 increases the sensitivity of CRC to 5-FU treatment by inducing apoptosis and JNK-dependent autophagic cell death. PCDH17 may be a potential prognostic marker for predicting 5-FU sensitivity in CRC patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Xiyao Pang ◽  
Ying Zhuang ◽  
Zehan Li ◽  
Shuanglin Jing ◽  
Qin Cai ◽  
...  

Objective. Parathyroid hormone (PTH) is considered to be essential during the tooth development. Stem cells from the apical papilla (SCAPs) are responsible for dentine formation. However, the interaction between PTH and SCAPs remains unclear. This study was aimed at investigating the effects of PTH on odonto/osteogenic differentiation capacity of SCAPs and elucidating the underlying molecular mechanisms. Materials and Methods. Here, SCAPs were isolated and identified in vitro. Effects of PTH on the proliferation of SCAPs were determined by Cell Counting Kit-8 (CCK-8), flow cytometry (FCM), and EdU. Alkaline phosphatase (ALP) activity, alizarin red staining, Western blot, and RT-PCR were carried out to detect the odonto/osteogenic differentiation of PTH-treated SCAPs as well as the participation of the MAPK signaling pathway. Results. An ALP activity assay determined that 10-8 mol/L PTH was the optimal concentration for the induction of SCAPs with no significant influence on the proliferation of SCAPs as indicated by CCK-8, FCM, and EdU. The expression of odonto/osteogenic markers was significantly upregulated in mRNA levels and protein levels. Moreover, intermittent treatment of PTH also increased phosphorylation of JNK and P38, and the differentiation was suppressed following the inhibition of JNK and P38 MAPK pathways. Conclusion. PTH can regulate the odonto/osteogenic differentiation of SCAPs via JNK and P38 MAPK pathways.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiao Xiao ◽  
Ge Jiang ◽  
Shengtao Zhang ◽  
Shuo Hu ◽  
Yunshan Fan ◽  
...  

Abstract Background The long non-coding (lnc) RNA activated by small nucleolar RNA host gene 16 (SNHG16), which has been reported to play a vital role in a number of different types of cancer, is a novel lncRNA. However, following an osteosarcoma (OS) study, the expression pattern, biological roles, clinical values and potential molecular mechanism of SNHG16 remain unclear. In the current study, we aimed to examine its expression and possible function in osteosarcoma (OS). Method Cell proliferation was measured by colony formation assay and Cell Counting Kit-8 (CCK-8) in vitro, and xenograft transplantation assay in vivo. Meanwhile, we used transwell chambers to test cell migration and invasion was evaluated. Cell cycle and apoptosis was evaluated by flow cytometry assay. Immunoblotting and qPCR analysis was carried out to detect protein and gene expression, respectively. Luciferase reporter assay was used to predict the potential downstream genes. Results The present study demonstrated that SNHG16 is highly expressed in both the tissues of patients with OS, as well as OS cell lines, and its expression level was positively correlated with clinical stage and poor overall survival. Functional assays revealed that the depletion of SNHG16 inhibits OS growth, OS cell progression and promotes apoptosis both in vivo and in vitro. In addition, the present study revealed that microRNA-1285-3p expression levels can be decreased by SNHG16 acting as a ‘sponge’, and that this pathway takes part in OS tumor growth in vivo, and OS cell proliferation, invasion, migration and apoptosis in vitro. Conclusions The results from the present study demonstrate the role of lncRNA SNHG16 in OS progression, which is SNHG16 might exert oncogenic role in osteosarcoma (OS) by acting as a ceRNA of miR-1285-3p, and it may become a novel target in OS therapy.


Sign in / Sign up

Export Citation Format

Share Document