scholarly journals Genome-Wide DNA Methylation Dynamics During Drought Responsiveness in Tibetan Hulless Barley

Author(s):  
Dunzhu Jabu ◽  
Zhaiming Yu ◽  
Qijun Xu ◽  
Haizhen Yang ◽  
Wang Mu ◽  
...  

Abstract Differences in drought stress tolerance within diverse grass genotypes have been attributed to epigenetic modifications. DNA methylation is an important epigenetic alteration regulating responses to drought-stress. However, its effects on drought-tolerance are poorly understood in Tibetan hulless barley. Here, bisulfite sequencing was conducted to profile the DNA methylation patterns of drought-tolerant variety XL and drought-sensitive one DQ under drought and control conditions. A total of 5843 million reads were generated. We found the significant genome-wide changes in CHH methylation rates between XL and DQ, while CG or CHG methylation rates did not. Besides that, the two contrasting varieties do reveal distinct responses to drought-stress in differentially methylated region (DMR) numbers and antioxidant activities. Genes in drought-tolerant varieties XL are rapidly and significantly methylated to alleviate the drought stress. DMR related genes in XL might involve in defense response and response to stimuli, which are confirmed by gene ontology analysis. Then, we focused on 1003 transcription factors and identified 15 specific DMR related transcription factors exhibiting specific methylation changes under drought stimuli. Finally, we identified three DMR related TFs (HVUL6H08680.2, HVUL4 h39100.2, and HVUL2H41931.2) where Arabidopsis homologues involve in responses to drought conditions. Altogether, DNA methylation regulate responsiveness to environmental stimuli, which could be mediated by methylation of transcription factors in hulless barely.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Teame Gereziher MEHARI ◽  
Yanchao XU ◽  
Richard Odongo MAGWANGA ◽  
Muhammad Jawad UMER ◽  
Joy Nyangasi KIRUNGU ◽  
...  

Abstract Background Cotton is an important commercial crop for being a valuable source of natural fiber. Its production has undergone a sharp decline because of abiotic stresses, etc. Drought is one of the major abiotic stress causing significant yield losses in cotton. However, plants have evolved self-defense mechanisms to cope abiotic factors like drought, salt, cold, etc. The evolution of stress responsive transcription factors such as the trihelix, a nodule-inception-like protein (NLP), and the late embryogenesis abundant proteins have shown positive response in the resistance improvement to several abiotic stresses. Results Genome wide identification and characterization of the effects of Light-Harvesting Chloro a/b binding (LHC) genes were carried out in cotton under drought stress conditions. A hundred and nine proteins encoded by the LHC genes were found in the cotton genome, with 55, 27, and 27 genes found to be distributed in Gossypium hirsutum, G. arboreum, and G. raimondii, respectively. The proteins encoded by the genes were unevenly distributed on various chromosomes. The Ka/Ks (Non-synonymous substitution rate/Synonymous substitution rate) values were less than one, an indication of negative selection of the gene family. Differential expressions of genes showed that majority of the genes are being highly upregulated in the roots as compared with leaves and stem tissues. Most genes were found to be highly expressed in MR-85, a relative drought tolerant germplasm. Conclusion The results provide proofs of the possible role of the LHC genes in improving drought stress tolerance, and can be explored by cotton breeders in releasing a more drought tolerant cotton varieties.


2018 ◽  
Vol 69 (10) ◽  
pp. 1009 ◽  
Author(s):  
Abdullahi Muhammad Labbo ◽  
Maryam Mehmood ◽  
Malik Nadeem Akhtar ◽  
Muhammad Jawad Khan ◽  
Aamira Tariq ◽  
...  

Mungbean (Vigna radiata L.) is a valuable legume crop grown in tropical and subtropical areas of Asia. Drought is one of the major factors hindering its growth globally. APETALA2/ethylene-responsive element factor binding proteins (AP2/ERF) are an important family of plant-specific transcription factors (TFs) involved in drought-stress tolerance. We identified 71 AP2/ERF TFs in the mungbean genome by using bioinformatics tools and classified them into subfamilies: AP2 (16 members), ERF (22), RAV (2), DREB (30) and soloist (other proteins with no domain, 1). Members of DREB play a critical role in drought-stress tolerance. Ten-day-old mungbean plants cv. AZRI-06 were exposed to drought stress by complete withholding of water for 7 days. Root samples were collected from control and drought-stressed plants, and the expression pattern of 30 identified VrDREB genes was determined by qPCR. Most VrDREB genes exhibited differential expression in response to drought. Five genes (VrDREB5, VrDREB12, VrDREB13, VrDREB22, VrDREB30) were highly expressed under drought stress and might be considered excellent candidates for further functional analysis and for improvement of mungbean drought tolerance.


2020 ◽  
Vol 37 (8) ◽  
pp. 2287-2299 ◽  
Author(s):  
Kostas Sagonas ◽  
Britta S Meyer ◽  
Joshka Kaufmann ◽  
Tobias L Lenz ◽  
Robert Häsler ◽  
...  

Abstract Parasites are arguably among the strongest drivers of natural selection, constraining hosts to evolve resistance and tolerance mechanisms. Although, the genetic basis of adaptation to parasite infection has been widely studied, little is known about how epigenetic changes contribute to parasite resistance and eventually, adaptation. Here, we investigated the role of host DNA methylation modifications to respond to parasite infections. In a controlled infection experiment, we used the three-spined stickleback fish, a model species for host–parasite studies, and their nematode parasite Camallanus lacustris. We showed that the levels of DNA methylation are higher in infected fish. Results furthermore suggest correlations between DNA methylation and shifts in key fitness and immune traits between infected and control fish, including respiratory burst and functional trans-generational traits such as the concentration of motile sperm. We revealed that genes associated with metabolic, developmental, and regulatory processes (cell death and apoptosis) were differentially methylated between infected and control fish. Interestingly, genes such as the neuropeptide FF receptor 2 and the integrin alpha 1 as well as molecular pathways including the Th1 and Th2 cell differentiation were hypermethylated in infected fish, suggesting parasite-mediated repression mechanisms of immune responses. Altogether, we demonstrate that parasite infection contributes to genome-wide DNA methylation modifications. Our study brings novel insights into the evolution of vertebrate immunity and suggests that epigenetic mechanisms are complementary to genetic responses against parasite-mediated selection.


Gene ◽  
2019 ◽  
Vol 718 ◽  
pp. 144018
Author(s):  
Fiaz Ahmad ◽  
Kiran Farman ◽  
Muhammad Waseem ◽  
Rashid Mehmood Rana ◽  
Muhammad Amjad Nawaz ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0199187 ◽  
Author(s):  
Suzam L. S. Pereira ◽  
Cristina P. S. Martins ◽  
Aurizangela O. Sousa ◽  
Luciana R. Camillo ◽  
Caroline P. Araújo ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3562-3562
Author(s):  
Karel Fišer ◽  
Lucie Slámová ◽  
Alena Dobiášová ◽  
Júlia Starková ◽  
Eva Froňková ◽  
...  

Abstract We identified a subset of BCP-ALL with switch towards the monocytic lineage within the first month of treatment (swALL)[Slámová et al Leukemia 2014]. During the switch cells gradually lose CD19 and CD34 expression and acquire CD33 and CD14 positivity. We proved clonal relatedness of switched monocytic blasts with the diagnostic leukemic cells based on identical Ig-TCR rearrangements. SwALL cases are not associated with MLL or BCR/ABL1 aberrancies and lack any known genetic markers of lineage ambiguity (detected by FISH or MLPA). We analyzed transcriptomes of swALL samples at diagnosis (n=4) and at d8 (n=4) where the immunophenotypic switching was already apparent as well as control BCP-ALL (n=4). RNA was isolated form either FACS sorted cells or whole BM when blasts constituted >80% of cells. For RNA-Seq we used Illumina HiSeq 2000 paired-end or single end sequencing. Raw sequencing data were analyzed using adapted protocol from Anders at al [Anders et al Nature Protocols 2013] and custom scripts. For methylome analysis we used Enhanced Reduced Representation Bisulfite Sequencing (ERRBS)[Akalin et al PLoS Genetics 2012]. ERRBS quantitatively measures DNA methylation at ~3M CpGs genome-wide. Samples from swALL at diagnosis (n=7) and at d8 (n=4) and control BCP-ALL (n=4) were processed. Analysis was performed according to [Akalin et al Genome Biology 2012] and followed with custom analysis in R statistical language. Comparison (generalized exact binomial test) of transcriptomes of B-lineage blasts from diagnosis between swALLs and control BCP-ALLs revealed a number of differentially expressed genes. Among 300 most significantly differentially expressed were KLF4, CEBPD, CLEC12A and CLEC12B (upregulated in swALL) and ANXA5, VPREB1, CD9 and IGHG3 (downregulated in swALL). Hierarchical clustering separated not only swALL and control BCP-ALL, but also swALL cells before and during the monocytic switch. Changes in gene expression during lineage switch included downregulation of ITGA6, Id2, EBF1, CD19, CD34, FLT3, MYB, CD79a, BCR, PAX5, GATA3 and TCF3 genes and upregulation of S100A10, AIF1, CD14, CD33, LGALS1, RNF130 and MNDA. When comparing all three cell types (swALL B cell and monocytic blasts and control BCP-ALL blasts) we concentrated on 1) immunophenotype switch markers and 2) lineage related transcription factors (TF): 1) Both markers typical for B cell blasts (CD19, CD34) decreased during the switch. However while CD19 was expressed in swALL at diagnosis at same levels as in control BCP-ALL, CD34 was overexpressed in swALL compared to BCP-ALL at diagnosis. Both monocytic markers (CD33, CD14) increased their expression during the switch. CD14 showed no difference between swALL and control BCP-ALL at diagnosis. However CD33 was interestingly upregulated in swALL already at diagnosis and continued to rise during the switch. SwALL had therefore deregulated expression of lineage commitment markers already at diagnosis favoring stemness marker CD34 and myeloid marker CD33. 2) B lineage commitment related TFs (EBF1, TCF3, PAX5) were expressed in B lineage blasts in both swALL and control BCP-ALL. However they were all downregulated during the switch. On the other hand myeloid lineage related transcription factor CEBPA is overexpressed in diagnostic B lineage blasts in swALL compared to control BCP-ALL cases. Similarly CEBPD is overexpressed in swALL and its expression further rises during the switch. Other hematopoietic TFs upregulated in swALL cases include KLF4, NANOG and GATA3. To confirm some of the epigenetic markers of swALL cases (demethylation of CEBPA promoter) and to widen epigenetic screening we used ERRBS. While some of the upregulated genes had expectedly hypomethylated promoters in swALL (CEBPA, GATA3) other genes (TCF3, PAX5) had demethylated promoters in all cases. While the whole DNA methylation picture is still a challenge to draw both omics method could clearly separate swALL cases from control BCP-ALL using principal component analysis. In summary we show that immunophenotypic shift is associated with gene expression changes of surface markers, lineage specific transcription factors and other genes. Some of the genes have altered expression already at diagnosis. Expression of some key lineage genes is differentially regulated by DNA methylation. Supported by: GAUK 914613, GAČR P301/10/1877, UNCE 204012, IGA NT13462-4 Disclosures No relevant conflicts of interest to declare.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 190
Author(s):  
Michael Ackah ◽  
Liangliang Guo ◽  
Shaocong Li ◽  
Xin Jin ◽  
Charles Asakiya ◽  
...  

Drought stress remains one of the most detrimental environmental cues affecting plant growth and survival. In this work, the DNA methylome changes in mulberry leaves under drought stress (EG) and control (CK) and their impact on gene regulation were investigated by MethylRAD sequencing. The results show 138,464 (37.37%) and 56,241 (28.81%) methylation at the CG and CWG sites (W = A or T), respectively, in the mulberry genome between drought stress and control. The distribution of the methylome was prevalent in the intergenic, exonic, intronic and downstream regions of the mulberry plant genome. In addition, we discovered 170 DMGs (129 in CG sites and 41 in CWG sites) and 581 DMS (413 in CG sites and 168 in CWG sites). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicates that phenylpropanoid biosynthesis, spliceosome, amino acid biosynthesis, carbon metabolism, RNA transport, plant hormone, signal transduction pathways, and quorum sensing play a crucial role in mulberry response to drought stress. Furthermore, the qRT-PCR analysis indicates that the selected 23 genes enriched in the KEGG pathways are differentially expressed, and 86.96% of the genes share downregulated methylation and 13.04% share upregulation methylation status, indicating the complex link between DNA methylation and gene regulation. This study serves as fundamentals in discovering the epigenomic status and the pathways that will significantly enhance mulberry breeding for adaptation to a wide range of environments.


Epigenomics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 771-788
Author(s):  
Siyu Liu ◽  
Chenyang Hu ◽  
Yueqiu Luo ◽  
Ke Yao

Aim: To investigate the possible epigenetic pathogenesis of sporadic congenital cataract. Materials & methods: We conducted whole genome bisulfite sequencing on peripheral blood from sporadic binocular or monocular congenital cataract patients and cataract-free participants. Results: We found massive differentially methylated regions within the whole genomes between any two groups. Meanwhile, we identified five genes ( ACTN4, ACTG1, TUBA1A, TUBA1C, TUBB4B) for the binocular and control groups and TUBA1A for the monocular and control groups as the core differentially methylated region-related genes. The proteins encoded by these core genes are involved in building cytoskeleton and intercellular junctions. Conclusion: Changes in the methylation levels of core genes may disturb the function of cytoskeleton and intercellular junctions, eventually leading to sporadic congenital cataract.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2329-2329
Author(s):  
Mira Jeong ◽  
Min Luo ◽  
Deqiang Sun ◽  
Gretchen Darlington ◽  
Rebecca Hannah ◽  
...  

Abstract Abstract 2329 Age is the most important risk factor for myelodysplastic syndrome (MDS), a premalignant state that transforms into acute myelogenous leukemia in one third of cases. Indeed with normal aging, hematopoietic stem cell (HSC) regenerative potential diminishes and differentiation skews from lymphopoiesis toward myelopoiesis. The expansion in the HSC pool with aging provides sufficient but abnormal blood production, and animals experience a decline in immune function. Previous studies from our lab established that the DNA methyltransferase 3a (Dnmt3a) enables efficient differentiation by critically regulating epigenetic silencing of HSC genes (Challen et al. 2012) Interestingly, Dnmt3a expression is decreased in old HSCs, leading us to hypothesize that epigenetic changes in old HSCs may partially mimic the changes seen in Dnmt3a mutant HSCs. We propose that revealing the genome-wide DNA methylation and transcriptome signatures will lead to a greater understanding of HSC aging and MDS, which is characterized by frequent epigenetic abnormalities. In this study, we investigated genome-wide DNA methylation and transcripts by whole genome bisulfite sequencing (WGBS) and transcriptome sequencing (mRNA-seq)in young and old HSCs. For WGBS, we generated ∼600M raw reads resulting in ∼ 60 raw Gb of paired-end sequence data and aligned them to either strand of the reference genome (mm9), providing an average 40-fold sequencing depth. Globally, there was a 1.1% difference in the DNA methylation between young and old HSCs. Of these differences, 38% (172,609) of the CpG dinucleotides were hypo-methylated, and 62% (275,557) were hyper-methylated in old HSCs. To understand where the methylation changes predominantly occurred, the genome was subdivided into 77 features. Among these features, SINEs, especially Alu elements, exhibited the highest level of DNA methylation (90.94% in young HSCs, and 91.87% in old HSCs). CpG islands (CGIs) adjacent to the transcription start sites (TSS) exhibited the lowest level of DNA methylation (2.02% in young HSCs, and 2.11% in old HSCs). Interestingly strong hypo-methylation was observed in ribosomal RNA regions (68.04% in young HSCs, 59.04% in old HSCs), and hyper-methylation was observed in LINEL1 repetitive elements (88.62% in young HSCs, 90.12% in old HSCs). Moreover, the examination of differentially methylated promoters identified enrichment of developmentally important transcription factors such as Gata2, Runx1, Gfi1b, Erg, Tal1 Eto2, Cebpa and Pu.1. Additionally, we compare our ∼10,000 differentially methylation regions (DMRs, regions with clustered DNA methylation changes) with a chip-seq data set containing binding of 160 ChIP-seq analyses of hematopoietic transcription factors in different hematopoietic cells. We found significant overlaps between DMRs and transcription factor binding regions. We found DMRs which were hypermethylated showed association with differentiation-promoting Ets factors, in particular Pu.1 from a range of different blood cell types. In contrast, hypomethylated DMRs showed associations with HSC-associated transcription factors such as Scl and Gata2. Further examination of the differentially methylated gene bodies, intragenic and intergenic DMRs identified some previously noted targets for epigenetic silencing or alteration in AML and also novel transcripts including long non-coding RNAs (lincRNA) and upstream regulatory elements (URE). We found significant correlation between RNA-seq expression and DMRs within +1kb upstream of TSS. RNA-sequencing provided complementary and distinct information about HSC aging. We identified differentially expressed genes, novel RNA transcripts, differential promoter, coding sequence, and splice variant usage with age. Gene set enrichment analysis of up- and down- regulated genes, revealed ribosomal protein and RNA metabolism as critical contributors to HSC aging. In conclusion, our study marks a milestone in the mouse HSC epigenome, reporting the first complete methylome and transcriptome of pure HSC using whole-genome bisulfite sequencing and RNA-seq. These provide novel information about the magnitude and specificity of age-related epigenetic changes in a well-defined HSC population. Understanding the roles of DNA methylation and transcription in normal HSC function will allow for greater therapeutic exploitation of HSCs in the clinic. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 19 (9) ◽  
pp. 2689 ◽  
Author(s):  
Zhixin Wang ◽  
Xiangping Wu ◽  
Zengxiang Wu ◽  
Hong An ◽  
Bin Yi ◽  
...  

DNA methylation is an essential epigenetic modification that dynamically regulates gene expression during plant development. However, few studies have determined the DNA methylation profiles of male-sterile rapeseed. Here, we conducted a global comparison of DNA methylation patterns between the rapeseed genic male sterile line 7365A and its near-isogenic fertile line 7365B by whole-genome bisulfite sequencing (WGBS). Profiling of the genome-wide DNA methylation showed that the methylation level in floral buds was lower than that in leaves and roots. Besides, a total of 410 differentially methylated region-associated genes (DMGs) were identified in 7365A relative to 7365B. Traditional bisulfite sequencing polymerase chain reaction (PCR) was performed to validate the WGBS data. Eleven DMGs were found to be involved in anther and pollen development, which were analyzed by quantitative PCR. In particular, Bnams4 was hypo-methylated in 7365A, and its expression was up-regulated, which might affect other DMGs and thus control the male sterility. This study provided genome-wide DNA methylation profiles of floral buds and important clues for revealing the molecular mechanism of genic male sterility in rapeseed.


Sign in / Sign up

Export Citation Format

Share Document