scholarly journals Circulating micro-RNAs Differentially Expressed in Korean Alzheimer’s Patients with Brain Aβ Accumulation Activate Amyloidogenesis

Author(s):  
Sakulrat Mankhong ◽  
Sujin Kim ◽  
Sohee Moon ◽  
Seong-Hye Choi ◽  
Hyo-Bum Kwak ◽  
...  

Abstract BACKGROUNDA role for extracellular vesicles (EVs) enriched with micro-RNAs (miRNAs) has been proposed in Alzheimer’s disease (AD) pathogenesis, leading to the discovery of blood miRNAs as biomarkers of AD. However, the diagnostic utility of specific miRNAs is not consistent. This study aimed to discover blood miRNAs that are differentially expressed in Korean AD patients, evaluate their clinical performance in plasma or plasma EVs, and investigate their role in amyloidogenesis. METHODSBlood from 15 (7 cognitively normal [CN] and 8 AD) out of 262 subjects (59 CN, 105 mild cognitive impairment [MCI], 98 AD) and 8 Parkinson’s disease (PD) patients was used to discover miRNAs differentially expressed in AD. We evaluated the clinical performance of these miRNAs in plasma of a subgroup of 100 subjects (51 CN, 22 MCI, 27 AD) and in plasma EVs isolated from the total cohort in a cross-sectional design. The effects of miRNAs on amyloid b (Ab) production and expression of their target genes were investigated in neuronal culture systems. RESULTSAmong 17 upregulated, and one downregulated miRNAs in AD (>2-fold), three upregulated miRNAs (miR-122-5p, miR-210-3p, and miR-590-5p) that were differentially expressed in AD compared with CN or PD were selected. Diagnostic utility for discrimination of AD or MCI from CN of the selected miRNAs in plasma or plasma EV was not high. Nevertheless, the levels of three miRNAs in plasma or plasma EVs of subjects who were Ab positive on positron emission tomography (PET) were significantly higher than those from subjects who were Ab-PET negative. Furthermore, the selected miRNAs induced Ab production through activation of b-cleavage of amyloid precursor protein and downregulated their target genes. Pathway enrichment and protein interaction network analysis of target genes of the miRNAs further supported the roles of the selected miRNAs in amyloidogenesis. CONCLUSIONThe diagnostic utility of circulating miR-122-5p, miR-210-3p, and miR-590-5p to discriminate AD from CN was modest. However, these miRNAs were highly expressed in patients with amyloid accumulation, which was supported by in vitro analysis of amyloidogenesis. Our results suggest that blood-based miRNA biomarkers may play a role in amyloidogenesis during AD onset and progression.

2021 ◽  
Vol 15 (8) ◽  
pp. 927-936 ◽  
Author(s):  
Yan Peng ◽  
Yuewu Liu ◽  
Xinbo Chen

Background: Drought is one of the most damaging and widespread abiotic stresses that can severely limit the rice production. MicroRNAs (miRNAs) act as a promising tool for improving the drought tolerance of rice and have become a hot spot in recent years. Objective: In order to further extend the understanding of miRNAs, the functions of miRNAs in rice under drought stress are analyzed by bioinformatics. Method: In this study, we integrated miRNAs and genes transcriptome data of rice under the drought stress. Some bioinformatics methods were used to reveal the functions of miRNAs in rice under drought stress. These methods included target genes identification, differentially expressed miRNAs screening, enrichment analysis of DEGs, network constructions for miRNA-target and target-target proteins interaction. Results: (1) A total of 229 miRNAs with differential expression in rice under the drought stress, corresponding to 73 rice miRNAs families, were identified. (2) 1035 differentially expressed genes (DEGs) were identified, which included 357 up-regulated genes, 542 down-regulated genes and 136 up/down-regulated genes. (3) The network of regulatory relationships between 73 rice miRNAs families and 1035 DEGs was constructed. (4) 25 UP_KEYWORDS terms of DEGs, 125 GO terms and 7 pathways were obtained. (5) The protein-protein interaction network of 1035 DEGs was constructed. Conclusion: (1) MiRNA-regulated targets in rice might mainly involve in a series of basic biological processes and pathways under drought conditions. (2) MiRNAs in rice might play critical roles in Lignin degradation and ABA biosynthesis. (3) MiRNAs in rice might play an important role in drought signal perceiving and transduction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samina Shabbir ◽  
Prerona Boruah ◽  
Lingli Xie ◽  
Muhammad Fakhar-e-Alam Kulyar ◽  
Mohsin Nawaz ◽  
...  

AbstractOvary development is an important determinant of the procreative capacity of female animals. Here, we performed genome-wide sequencing of long non-coding RNAs (lncRNAs) and mRNAs on ovaries of 1, 3 and 8 months old Hu sheep to assess their expression profiles and roles in ovarian development. We identified 37,309 lncRNAs, 45,404 messenger RNAs (mRNAs) and 330 novel micro RNAs (miRNAs) from the transcriptomic analysis. Six thousand, seven hundred and sixteen (6716) mRNAs and 1972 lncRNAs were significantly and differentially expressed in ovaries of 1 month and 3 months old Hu sheep (H1 vs H3). These mRNAs and target genes of lncRNAs were primarily enriched in the TGF-β and PI3K-Akt signalling pathways which are closely associated with ovarian follicular development and steroid hormone biosynthesis regulation. We identified MSTRG.162061.1, MSTRG.222844.7, MSTRG.335777.1, MSTRG.334059.16, MSTRG.188947.6 and MSTRG.24344.3 as vital genes in ovary development by regulating CTNNB1, CCNA2, CDK2, CDC20, CDK1 and EGFR expressions. A total of 2903 mRNAs and 636 lncRNAs were differentially expressed in 3 and 8 months old ovaries of Hu sheep (H3 vs H8); and were predominantly enriched in PI3K-Akt, progesterone-mediated oocyte maturation, estrogen metabolism, ovulation from the ovarian follicle and oogenesis pathways. These lncRNAs were also found to regulate FGF7, PRLR, PTK2, AMH and INHBA expressions during follicular development. Our result indicates the identified genes participate in the development of the final stages of follicles and ovary development in Hu sheep.


Author(s):  
Chengyi Fu ◽  
Shu Lou ◽  
Guirong Zhu ◽  
Liwen Fan ◽  
Xin Yu ◽  
...  

Objective: To identify new microRNA (miRNA)-mRNA networks in non-syndromic cleft lip with or without cleft palate (NSCL/P).Materials and Methods: Overlapping differentially expressed miRNAs (DEMs) were selected from cleft palate patients (GSE47939) and murine embryonic orofacial tissues (GSE20880). Next, the target genes of DEMs were predicted by Targetscan, miRDB, and FUNRICH, and further filtered through differentially expressed genes (DEGs) from NSCL/P patients and controls (GSE42589), MGI, MalaCards, and DECIPHER databases. The results were then confirmed by in vitro experiments. NSCL/P lip tissues were obtained to explore the expression of miRNAs and their target genes.Results: Let-7c-5p and miR-193a-3p were identified as DEMs, and their overexpression inhibited cell proliferation and promoted cell apoptosis. PIGA and TGFB2 were confirmed as targets of let-7c-5p and miR-193a-3p, respectively, and were involved in craniofacial development in mice. Negative correlation between miRNA and mRNA expression was detected in the NSCL/P lip tissues. They were also associated with the occurrence of NSCL/P based on the MGI, MalaCards, and DECIPHER databases.Conclusions: Let-7c-5p-PIGA and miR-193a-3p-TGFB2 networks may be involved in the development of NSCL/P.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Kumar Vaibhav ◽  
Shannon Williams ◽  
Sumbul Fatima ◽  
Babak Baban ◽  
Krishnan M Dhandapani ◽  
...  

Background: Micro RNAs (miRNAs) could target multiple mRNAs, repressing the protein translation. We report acute changes in humoral miRNAome in a murine thromboembolic stroke model (eMCAo), and demonstrate the benefits of miRNA therapy in improving cerebral blood flow (CBF). Methods: Non-biased micro RNA (miRNA) array and bioinformatics analysis was performed in plasma collected at 4h post-eMCAo from male mice (C57/B6, 16-weeks). Individual PCR for miRNAs was also performed in brain tissues at 24h post-eMCAo. Moreover, frozen human plasma samples collected at ~4.5h post-stroke were also used for miRNA analysis. Finally, the miRNA mimic that was predicted to target genes of our interest was also tested in vivo and in vitro . Results: Principal component analysis (PCA) of the miRNA-array showed ~68% variance in the humoral miRNAome 4h after eMCAo in mice, and a significant change in Stroke vs. Sham groups (Cut off value >2 fold; p<0.05). Of interest, the hairpin precursor of miR-449b was downregulated (~2.35 fold, p<0.05) at 4h post-eMCAo, while the mature miR-449b was also significantly reduced at 24h post-eMCAo. Mature miR-449b was significantly reduced in human stroke plasma, too. In human brain endothelial cells, miR-449b mimic downregulated gene expressions of both plasminogen activator inhibitor (PAI-1) and alpha 2- antiplasmin (α-AP) only in hypoxia but not during normoxia. Therefore, we finally tested the cholesterol-conjugated miR-449b mimic in the murine eMCAo model. Pre-treatment with miR-449b mimic (8 mg/kg bwt) increased the absolute CBF and reduced edema (as determined by MRI), and also improved the neurological outcomes and reduced % infarct volume (p<0.05). Results: The miR-449b mimic could be a possible therapy to suppress aberrant gene expressions of PAI-1 and α-AP, which will allow more spontaneous reperfusion and benefits from low dose tPA.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jianqing Li ◽  
Xue Yin ◽  
Bingyu Zhang ◽  
Chen Li ◽  
Peirong Lu

Purpose. Macrophage aging is involved with the occurrence and progression of age-related macular degeneration (AMD). The purpose of this study was to identify the specific microRNAs (miRNA), mRNAs, and their interactions underlying macrophage aging and response to cholesterol through bioinformatical analysis in order to get a better understanding of the mechanism of AMD. Methods. The microarray data were obtained from Gene Expression Omnibus (accession GSE111304 and GSE111382). The age-related differentially expressed genes in macrophages were identified using R software. Further miRNA-mRNA interactions were analyzed through miRWalk, mirTarBase, starBase, and then produced by Cytoscape. The functional annotations including Gene Ontology and KEGG pathways of the miRNA target genes were performed by the DAVID and the STRING database. In addition, protein-protein interaction network was constructed to identify the key genes in response to exogenous cholesterol. Results. When comparing aged and young macrophages, a total of 14 miRNAs and 101 mRNAs were detected as differentially expressed. Besides, 19 validated and 544 predicted miRNA-mRNA interactions were detected. Lipid metabolic process was found to be associated with macrophage aging through functional annotations of the miRNA targets. After being treated with oxidized and acetylated low-density lipoprotein, miR-714 and 16 mRNAs differentially expressed in response to both kinds of cholesterol between aged and young macrophages. Among them, 6 miRNA-mRNA predicted pairs were detected. The functional annotations were mainly related to lipid metabolism process and farnesyl diphosphate farnesyl transferase 1 (FDFT1) was identified to be the key gene in the difference of response to cholesterol between aged and young macrophages. Conclusions. Lipid metabolic process was critical in both macrophage aging and response to cholesterol thus was regarded to be associated with the occurrence and progression of AMD. Moreover, miR-714-FDFT1 may modulate cholesterol homeostasis in aged macrophages and have the potential to be a novel therapeutic target for AMD.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1250
Author(s):  
Wenhu Cao ◽  
Erik Stricker ◽  
Agnes Hotz-Wagenblatt ◽  
Anke Heit-Mondrzyk ◽  
Georgios Pougialis ◽  
...  

In addition to regulatory or accessory proteins, some complex retroviruses gain a repertoire of micro-RNAs (miRNAs) to regulate and control virus–host interactions for efficient replication and spread. In particular, bovine and simian foamy viruses (BFV and SFV) have recently been shown to express a diverse set of RNA polymerase III-directed miRNAs, some with a unique primary miRNA double-hairpin, dumbbell-shaped structure not known in other viruses or organisms. While the mechanisms of expression and structural requirements have been studied, the functional importance of these miRNAs is still far from understood. Here, we describe the in silico identification of BFV miRNA targets and the subsequent experimental validation of bovine Ankyrin Repeat Domain 17 (ANKRD17) and Bax-interacting factor 1 (Bif1) target genes in vitro and, finally, the suppression of ANKRD17 downstream genes in the affected pathway. Deletion of the entire miRNA cassette in the non-coding part of the U3 region of the long terminal repeats attenuated replication of corresponding BFV mutants in bovine cells. This repression can be almost completely trans-complemented by the most abundant miRNA BF2-5p having the best scores for predicted and validated BFV miRNA target genes. Deletion of the miRNA cassette does not grossly affect particle release and overall particle composition.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jiacheng Wu ◽  
Shui Liu ◽  
Yien Xiang ◽  
Xianzhi Qu ◽  
Yingjun Xie ◽  
...  

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and is associated with a high mortality rate and poor treatment efficacy. In an attempt to investigate the mechanisms involved in the pathogenesis of HCC, bioinformatic analysis and validation by qRT-PCR were performed. Three circRNA GEO datasets and one miRNA GEO dataset were selected for this purpose. Upon combined biological prediction, a total of 11 differentially expressed circRNAs, 15 differentially expressed miRNAs, and 560 target genes were screened to construct a circRNA-related ceRNA network. GO analysis and KEGG pathway analysis were performed for the 560 target genes. To further screen key genes, a protein-protein interaction network of the target genes was constructed using STRING, and the genes and modules with higher degree were identified by MCODE and CytoHubba plugins of Cytoscape. Subsequently, a module was screened out and subjected to GO enrichment analysis and KEGG pathway analysis. This module included eight genes, which were further screened using TCGA. Finally, UBE2L3 was selected as a key gene and the hsa_circ_0009910–miR-1261–UBE2L3 regulatory axis was established. The relative expression of the regulatory axis members was confirmed by qRT-PCR in 30 pairs of samples, including HCC tissues and adjacent nontumor tissues. The results suggested that hsa_circ_0009910, which was upregulated in HCC tissues, participates in the pathogenesis of HCC by acting as a sponge of miR-1261 to regulate the expression of UBE2L3. Overall, this study provides support for the possible mechanisms of progression in HCC.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 417
Author(s):  
Chuanxi Peng ◽  
Xing Wang ◽  
Tianyu Feng ◽  
Rui He ◽  
Mingcai Zhang ◽  
...  

MicroRNAs (miRNAs), the post-transcriptional gene regulators, are known to play an important role in plant development. The identification of differentially expressed miRNAs could better help us understand the post-transcriptional regulation that occurs during maize internode elongation. Accordingly, we compared the expression of MIRNAs between fixed internode and elongation internode samples and classified six differentially expressed MIRNAs as internode elongation-responsive miRNAs including zma-MIR160c, zma-MIR164b, zma-MIR164c, zma-MIR168a, zma-MIR396f, and zma-MIR398b, which target mRNAs supported by transcriptome sequencing. Functional enrichment analysis for predictive target genes showed that these miRNAs were involved in the development of internode elongation by regulating the genes respond to hormone signaling. To further reveal how miRNA affects internode elongation by affecting target genes, the miRNA–mRNA–PPI (protein and protein interaction) network was constructed to summarize the interaction of miRNAs and these target genes. Our results indicate that miRNAs regulate internode elongation in maize by targeting genes related to cell expansion, cell wall synthesis, transcription, and regulatory factors.


2010 ◽  
Vol 299 (2) ◽  
pp. E308-E317 ◽  
Author(s):  
Merce Miranda ◽  
Xavier Escoté ◽  
María J. Alcaide ◽  
Esther Solano ◽  
Victòria Ceperuelo-Mallafré ◽  
...  

LPIN1 is a gene with important effects on lipidic and metabolic homeostasis. Human subcutaneous LPIN1 expression levels in adipose tissue are related with a better metabolic profile, including insulin sensitivity markers. However, there are few data on the regulation of LPIN1 in visceral adipose tissue (VAT). Our aim was to perform a cross-sectional analysis of VAT compared with subcutaneous (SAT) LPIN1 expression in a well-characterized obese cohort, its relation with the expression of genes involved in lipid metabolism, and the in vitro response to lipogenic and lipolytic stimuli. A downregulation of total LPIN1 mRNA expression in subjects with obesity was found in VAT similarly to that in SAT. Despite similar total LPIN1 mRNA levels in SAT and VAT, a close relationship with clinical parameters and with many lipogenic and lipolytic genes was observed primarily in SAT depot. As shown in the in vitro analysis, the low-grade proinflammatory environment and the insulin resistance associated with obesity may contribute to downregulate LPIN1 in adipose tissue, leading to a worse metabolic profile.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2178-2178
Author(s):  
Goran Karlsson ◽  
Yingchun Liu ◽  
Marie-José Goumans ◽  
Jonas Larsson ◽  
Ju-Seog Lee ◽  
...  

Abstract In the hematopoietic system, TGF-β1 is one of the most potent extrinsic regulators, affecting both early progenitors and committed cells. At the top of the hematopoietic hierarchy, TGF-β1 maintains hematopoietic stem cells (HSCs) in quiescence in vitro through transcriptional regulation of genes encoding proteins important in the cell cycle. We have shown that TGF-β receptor I (TβRI) −/− HSCs exhibit increased proliferative capacity in vitro and that TβRII−/− mice develop a multifocal autoimmune disease, mainly mediated by T-cells (Larsson et al, 2003, Levéen et al 2002). The mechanisms of TGF-β signaling in hematopoietic cells are poorly understood and many target genes of TGF-β signaling remain elusive. In this study we have used global gene expression analysis to investigate whether all TGF-β signaling is mediated by TβRI and II. Furthermore, we asked what target genes are affected upon TGF-β stimulation in normal and TGF-β signaling deficient murine embryonic fibroblasts (MEFs). MEFs were grown with and without TGF-β1 stimulation and proliferation, transcriptional responses and expression analysis were performed. We demonstrate through Western Blot analysis, luciferase reporter assays and cell expansion experiments how these cells lack functional TβRI. Additionally, transcriptional assays show that no other Smad activity is triggered by TGF-β1 stimulation. Furthermore, we demonstrate through quantitative RT-PCR that the inhibitor of differentiation family of genes, known targets of TGF-β signaling, are not affected by TGF-β1 in TβRI−/− MEFs, while wt cells downregulate these genes 4–8.5 fold in response to stimulation. In order to completely exclude alternative receptors outside the TGF-β superfamily and signaling pathways activated through TβRII alone, we performed global gene expression profiling on TGF-β1 stimulated TβRI−/− MEFs with unstimulated TβRI deficient cells as reference. Very few (0.05 %) of the more than 37,000 spots on the microarray had a >2 fold differential expression in the two experiments conducted. Similar experiments performed on wt cells resulted in differential expression of between 2.6–3.9 % of the genes printed. From this data we conclude that no signaling affecting gene expression occur in the absence of TβRI in these cells. Additionally we present transcriptional profiles of MEF cell lines that either are normal or are TβRI deficient. By means of cDNA microarray technology, we have identified genes that were differentially expressed when TβRI deficient fibroblasts were compared to wt cells stimulated with TGF-β1. Our results create a data base of 461 significantly differentially expressed (p<0.01) target genes of TGF-β signaling. These include genes potentially responsible for the growth arrest induced by TGF-β1, like Gadd45g, Gas5, Id1, Id2 and Id3. However, the most significantly enriched number of differentially expressed genes are involved in protein folding and chaperone activities (Hspa9a, Hsp105, Hspe1, Hsp60, Cct2, Cct3, Cct8, Tcp1 and Dnaja1. Studies to identify TGF-β signaling responsive genes in HSCs are in progress.


Sign in / Sign up

Export Citation Format

Share Document