scholarly journals Crosstalk between SUMOylated PPARγ1 and FOXO1 Exerts a Positive-feedback Effect on Vascular Endothelial Insulin Resistance

Author(s):  
Ying Kong ◽  
Ailin Niu ◽  
Wanwan Yuan ◽  
Min Xia ◽  
Xiaowei Xiong ◽  
...  

Abstract Background: PPARγ and FOXO1 are key regulators of transcription factors that mediate insulin sensitivity. We previously showed that a small ubiquitin-related modifier of PPARγ1 at K77 (SUMOylation) favors endothelial insulin resistance (IR) induced by high-fat/high-glucose (HF/HG) administration. However, whether and how the crosstalk between SUMOylated PPARγ1 and FOXO1 mediates the development of IR remains unclear. Here, we place emphasis on elucidating how PPARγ1-K77 SUMOylation interacts with FOXO1 and participates in the development of endothelial IR.Methods: Adenovirus or adeno-associated virus carrying a truncated PPARγ1 containing AF1 and DBD domains fused with SUMO-1 (PPARγ1[1-182 aa]-SUMO-1 fusion protein) was utilized to simulate PPARγ1-K77 SUMOylation. Furthermore, we carried out PPARγ1-K77 SUMOylation imitating-IR and worsening-IR experiments in vitro and in vivo. The vascular diastolic function and levels of p-IKK, IKK, p-PI3K, PI3K, p-Akt, Akt, p-eNOS, and eNOS were measured. To elucidate the underlying mechanism, the interaction of PPARγ1-K77 SUMOylation and FOXO1 was examined by co-immunoprecipitation. The recruitment of PPARγ1 or FOXO1 to PPRE was analyzed by chromatin immunoprecipitation, followed by measuring the PPARγ1 transcriptional activity and translocation of FOXO1.Results: Our results show that like HF/HG, PPARγ1-K77 SUMOylation imitates endothelial IR and dysfunction, presenting decreased NO levels and elevated ET-1 levels, with PI3K/Akt/eNOS pathway inhibited, and endothelium-dependent vasodilation function impaired. Moreover, combination of HF/HG and PPARγ1-K77 SUMOylation exhibits a synergistic worsening effect on endothelial IR. Mechanistically, the results reveal that PPARγ1-K77 SUMOylation readily interacts with FOXO1, and the PPRE binding site of PI3K is competitively blocked by FOXO1, which represses PPARγ1 transcriptional activity and downregulates the PI3K-Akt pathway. Inhibition of the PI3K-Akt pathway promotes the nuclear accumulation of FOXO1, which interacts with SUMOylated PPARγ1 in the nucleus, exerting a positive feedback effect on IR pathogenesis.Conclusion: These results reveal a novel association between PPARγ1-K77 SUMOylation and FOXO1, which inhibits PPARγ1 transcriptional activity and contributes to vascular endothelial IR. These findings will be beneficial for better understanding the pathogenesis of endothelial IR and providing novel pharmacological targets for diabetic angiopathy.

Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 693 ◽  
Author(s):  
Sébastien Dupasquier ◽  
Philippe Blache ◽  
Laurence Picque Lasorsa ◽  
Han Zhao ◽  
Jean-Daniel Abraham ◽  
...  

Inactivating mutations of the tumor suppressor Adenomatosis Polyposis Coli (APC), which are found in familial adenomatosis polyposis and in 80% of sporadic colorectal cancers (CRC), result in constitutive activation of the Wnt/β-catenin pathway and tumor development in the intestine. These mutations disconnect the Wnt/β-catenin pathway from its Wnt extracellular signal by inactivating the APC/GSK3-β/axin destruction complex of β-catenin. This results in sustained nuclear accumulation of β-catenin, followed by β-catenin-dependent co-transcriptional activation of Wnt/β-catenin target genes. Thus, mechanisms acting downstream of APC, such as those controlling β-catenin stability and/or co-transcriptional activity, are attractive targets for CRC treatment. Protein Kinase C-α (PKCα) phosphorylates the orphan receptor RORα that then inhibits β-catenin co-transcriptional activity. PKCα also phosphorylates β-catenin, leading to its degradation by the proteasome. Here, using both in vitro (DLD-1 cells) and in vivo (C57BL/6J mice) PKCα knock-in models, we investigated whether enhancing PKCα function could be beneficial in CRC treatment. We found that PKCα is infrequently mutated in CRC samples, and that inducing PKCα function is not deleterious for the normal intestinal epithelium. Conversely, di-terpene ester-induced PKCα activity triggers CRC cell death. Together, these data indicate that PKCα is a relevant drug target for CRC treatment.


1980 ◽  
Vol 86 (3) ◽  
pp. 459-464 ◽  
Author(s):  
P. J. SHARP ◽  
R. MASSA

In the laying hen, progesterone was shown to be converted in vitro in the pituitary gland and the hypothalamus to 5β-pregnane-3,20-dione (5β-DHP), 5β-pregnan-3α-ol-20-one (5β,3α-ol) and 5α-pregnane-3,20-dione (5α-DHP) and in the hyperstriatum dorsale to 5β-DHP and 5β,3α-ol. The conversion of progesterone to 5β-reduced metabolites was greater in the hyperstriatum dorsale than in the hypothalamus (P<0·001) and greater in the hypothalamus than in the pituitary gland (P <0·01). The conversion of progesterone to 5β-reduced metabolites was greater than its conversion to 5α-DHP in the pituitary gland (P <0·01) and the hypothalamus (P < 0·001). The possibility was investigated that 5α-DHP and 5β-DHP may act as metabolic intermediaries in the mechanism by which progesterone exerts a positive feedback effect on LH release. Progesterone, 5α-DHP and 5β-DHP were injected into laying hens at doses of 0·05,0·25 and 1·25 mg/kg and the changes in the concentration of plasma LH were followed for 4 h thereafter. Secretion of LH was stimulated after treatment with progesterone or 5α-DHP but not 5β-DHP. Progesterone stimulated LH release more effectively than did 5α-DHP, since an increase in the concentration of plasma LH was observed after 0·25 mg progesterone/kg but not after the same dose of 5α-DHP. It was concluded that in the hen 5α-DHP is unlikely to play a role in the induction of the preovulatory release of LH.


2008 ◽  
Vol 105 (46) ◽  
pp. 17818-17823 ◽  
Author(s):  
Daniela Sorriento ◽  
Michele Ciccarelli ◽  
Gaetano Santulli ◽  
Alfonso Campanile ◽  
Giovanna Giuseppina Altobelli ◽  
...  

G-protein-coupled receptor (GPCR) kinases, GRKs, are known as serine/threonine kinases that regulate GPCR signaling, but recent findings propose functions for these kinases besides receptor desensitization. Indeed, GRK5 can translocate to the nucleus by means of a nuclear localization sequence, suggesting that this kinase regulates transcription events in the nucleus. To evaluate the effect of GRK5–IκBα interaction on NFκB signaling, we induced the overexpression and the knockdown of GRK5 in cell cultures. GRK5 overexpression causes nuclear accumulation of IκBα, leading to the inhibition of NFκB transcriptional activity. Opposite results are achieved by GRK5 knockdown through siRNA. A physical interaction between GRK5 and IκBα, rather than phosphorylative events, appears as the underlying mechanism. We identify the regulator of gene protein signaling homology domain of GRK5 (RH) and the N-terminal domain of IκBα as the regions involved in such interaction. To confirm the biological relevance of this mechanism of regulation for NFκB, we evaluated the effects of GRK5-RH on NFκB-dependent phenotypes. In particular, GRK5-RH overexpression impairs apoptosis protection and cytokine production in vitro and inflammation and tissue regeneration in vivo. Our results reveal an unexpected role for GRK5 in the regulation of NFκB transcription activity. Placing these findings in perspective, this mechanism may represent a therapeutic target for all those conditions involving excessive NFκB activity.


2020 ◽  
Vol 8 (1) ◽  
pp. e001081
Author(s):  
Jie Zhang ◽  
Meng Zhang ◽  
Zhi Yang ◽  
Shanying Huang ◽  
Xiao Wu ◽  
...  

ObjectiveDiabetic cardiomyopathy (DCM) is characterized by cardiac remodeling, dysfunction, and insulin resistance; however, the underlying mechanism has not been fully elucidated. Programmed cell death 4 (PDCD4) is a novel inflammation and apoptosis gene, but its role in type 2 DCM remains elusive. We aimed to determine if PDCD4 intervention improves DCM by affecting left ventricular remodeling, function, and insulin resistance.Research design and methodsWe designed a PDCD4-/- rat, established a type 2 diabetes animal model, and constructed a PDCD4 overexpressed adenovirus and PDCD4 small interfer RNA (siRNA) vectors to alter PDCD4 expression in H9c2 cardiomyocytes. Thereafter, glucose levels, lipid metabolism, echocardiography, and extent of myocardial fibrosis, inflammation, and apoptosis were compared in vivo and in vitro.ResultsPDCD4 deficiency improved insulin resistance, cardiac remodeling, and dysfunction in type 2 DCM rats and improved myocardial hypertrophy, fibrosis, inflammation, and apoptosis. Proliferation and transformation of cardiac fibroblasts was reduced via PDCD4 downregulation in vitro under high-glucose stimulation. Furthermore, PDCD4 regulated the myocardial phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) pathway in vivo and in vitro. PDCD4 intervention affected cardiac remodeling, dysfunction, and insulin resistance by influencing fibrosis, inflammation, and apoptosis via the PI3K-AKT pathway in vivo.ConclusionsPDCD4 knockdown protected against left ventricular remodeling, dysfunction, and insulin resistance in type 2 DCM rats. The underlying mechanisms may involve reducing cardiomyocyte apoptosis, inflammation, fibrosis, and normalized PI3K-AKT phosphorylation. To the best of our knowledge, our study is the first to report the effects and underlying mechanisms of PDCD4 in type 2 DCM. These results provide a potential new treatment avenue for improving the prognosis of patients with type 2 DCM.


Oncogene ◽  
2021 ◽  
Author(s):  
Senlin Zhao ◽  
Bingjie Guan ◽  
Yushuai Mi ◽  
Debing Shi ◽  
Ping Wei ◽  
...  

AbstractGlycolysis plays a crucial role in reprogramming the metastatic tumor microenvironment. A series of lncRNAs have been identified to function as oncogenic molecules by regulating glycolysis. However, the roles of glycolysis-related lncRNAs in regulating colorectal cancer liver metastasis (CRLM) remain poorly understood. In the present study, the expression of the glycolysis-related lncRNA MIR17HG gradually increased from adjacent normal to CRC to the paired liver metastatic tissues, and high MIR17HG expression predicted poor survival, especially in patients with liver metastasis. Functionally, MIR17HG promoted glycolysis in CRC cells and enhanced their invasion and liver metastasis in vitro and in vivo. Mechanistically, MIR17HG functioned as a ceRNA to regulate HK1 expression by sponging miR-138-5p, resulting in glycolysis in CRC cells and leading to their invasion and liver metastasis. More interestingly, lactate accumulated via glycolysis activated the p38/Elk-1 signaling pathway to promote the transcriptional expression of MIR17HG in CRC cells, forming a positive feedback loop, which eventually resulted in persistent glycolysis and the invasion and liver metastasis of CRC cells. In conclusion, the present study indicates that the lactate-responsive lncRNA MIR17HG, acting as a ceRNA, promotes CRLM through a glycolysis-mediated positive feedback circuit and might be a novel biomarker and therapeutic target for CRLM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryosuke Nakamura ◽  
Nao Hiwatashi ◽  
Renjie Bing ◽  
Carina P. Doyle ◽  
Ryan C. Branski

AbstractVocal fold (VF) fibrosis is a major cause of intractable voice-related disability and reduced quality of life. Excision of fibrotic regions is suboptimal and associated with scar recurrence and/or further iatrogenic damage. Non-surgical interventions are limited, putatively related to limited insight regarding biochemical events underlying fibrosis, and downstream, the lack of therapeutic targets. YAP/TAZ integrates diverse cell signaling events and interacts with signaling pathways related to fibrosis, including the TGF-β/SMAD pathway. We investigated the expression of YAP/TAZ following vocal fold injury in vivo as well as the effects of TGF-β1 on YAP/TAZ activity in human vocal fold fibroblasts, fibroblast-myofibroblast transition, and TGF-β/SMAD signaling. Iatrogenic injury increased nuclear localization of YAP and TAZ in fibrotic rat vocal folds. In vitro, TGF-β1 activated YAP and TAZ in human VF fibroblasts, and inhibition of YAP/TAZ reversed TGF-β1-stimulated fibroplastic gene upregulation. Additionally, TGF-β1 induced localization of YAP and TAZ in close proximity to SMAD2/3, and nuclear accumulation of SMAD2/3 was inhibited by a YAP/TAZ inhibitor. Collectively, YAP and TAZ were synergistically activated with the TGF-β/SMAD pathway, and likely essential for the fibroplastic phenotypic shift in VF fibroblasts. Based on these data, YAP/TAZ may evolve as an attractive therapeutic target for VF fibrosis.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Guoying Zhang ◽  
Cheng Xue ◽  
Yiming Zeng

Abstract Background We have previously found that β-elemene could inhibit the viability of airway granulation fibroblasts and prevent airway hyperplastic stenosis. This study aimed to elucidate the underlying mechanism and protective efficacy of β-elemene in vitro and in vivo. Methods Microarray and bioinformatic analysis were used to identify altered pathways related to cell viability in a β-elemene-treated primary cell model and to construct a β-elemene-altered ceRNA network modulating the target pathway. Loss of function and gain of function approaches were performed to examine the role of the ceRNA axis in β-elemene's regulation of the target pathway and cell viability. Additionally, in a β-elemene-treated rabbit model of airway stenosis, endoscopic and histological examinations were used to evaluate its therapeutic efficacy and further verify its mechanism of action. Results The hyperactive ILK/Akt pathway and dysregulated LncRNA-MIR143HG, which acted as a miR-1275 ceRNA to modulate ILK expression, were suppressed in β-elemene-treated airway granulation fibroblasts; β-elemene suppressed the ILK/Akt pathway via the MIR143HG/miR-1275/ILK axis. Additionally, the cell cycle and apoptotic phenotypes of granulation fibroblasts were altered, consistent with ILK/Akt pathway activity. In vivo application of β-elemene attenuated airway granulation hyperplasia and alleviated scar stricture, and histological detections suggested that β-elemene's effects on the MIR143HG/miR-1275/ILK axis and ILK/Akt pathway were in line with in vitro findings. Conclusions MIR143HG and ILK may act as ceRNA to sponge miR-1275. The MIR143HG/miR-1275/ILK axis mediates β-elemene-induced cell cycle arrest and apoptosis of airway granulation fibroblasts by modulating the ILK/Akt pathway, thereby inhibiting airway granulation proliferation and ultimately alleviating airway stenosis.


Author(s):  
Jin-Chun Qi ◽  
Zhan Yang ◽  
Tao Lin ◽  
Long Ma ◽  
Ya-Xuan Wang ◽  
...  

Abstract Background Both E2F transcription factor and cyclin-dependent kinases (CDKs), which increase or decrease E2F activity by phosphorylating E2F or its partner, are involved in the control of cell proliferation, and some circRNAs and miRNAs regulate the expression of E2F and CDKs. However, little is known about whether dysregulation among E2Fs, CDKs, circRNAs and miRNAs occurs in human PCa. Methods The expression levels of CDK13 in PCa tissues and different cell lines were determined by quantitative real-time PCR and Western blot analysis. In vitro and in vivo assays were preformed to explore the biological effects of CDK13 in PCa cells. Co-immunoprecipitation anlysis coupled with mass spectrometry was used to identify E2F5 interaction with CDK13. A CRISPR-Cas9 complex was used to activate endogenous CDK13 and circCDK13 expression. Furthermore, the mechanism of circCDK13 was investigated by using loss-of-function and gain-of-function assays in vitro and in vivo. Results Here we show that CDK13 is significantly upregulated in human PCa tissues. CDK13 depletion and overexpression in PCa cells decrease and increase, respectively, cell proliferation, and the pro-proliferation effect of CDK13 is strengthened by its interaction with E2F5. Mechanistically, transcriptional activation of endogenous CDK13, but not the forced expression of CDK13 by its expression vector, remarkably promotes E2F5 protein expression by facilitating circCDK13 formation. Further, the upregulation of E2F5 enhances CDK13 transcription and promotes circCDK13 biogenesis, which in turn sponges miR-212-5p/449a and thus relieves their repression of the E2F5 expression, subsequently leading to the upregulation of E2F5 expression and PCa cell proliferation. Conclusions These findings suggest that CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 is responsible for PCa development. Targeting this newly identified regulatory axis may provide therapeutic benefit against PCa progression and drug resistance.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4127
Author(s):  
Aline de Cristo Soares Alves ◽  
Franciele Aline Bruinsmann ◽  
Silvia Stanisçuaski Guterres ◽  
Adriana Raffin Pohlmann

Bevacizumab (BCZ) is a recombinant humanized monoclonal antibody against the vascular endothelial growth factor, which is involved in the angiogenesis process. Pathologic angiogenesis is observed in several diseases including ophthalmic disorders and cancer. The multiple administrations of BCZ can cause adverse effects. In this way, the development of controlled release systems for BCZ delivery can promote the modification of drug pharmacokinetics and, consequently, decrease the dose, toxicity, and cost due to improved efficacy. This review highlights BCZ formulated in organic nanoparticles providing an overview of the physicochemical characterization and in vitro and in vivo biological evaluations. Moreover, the main advantages and limitations of the different approaches are discussed. Despite difficulties in working with antibodies, those nanocarriers provided advantages in BCZ protection against degradation guaranteeing bioactivity maintenance.


Sign in / Sign up

Export Citation Format

Share Document