scholarly journals Effect of Spacing and Sucker Removal on Precocity of Hazelnut Seedlings

1992 ◽  
Vol 117 (3) ◽  
pp. 523-526 ◽  
Author(s):  
Shawn A. Mehlenbacher ◽  
David C. Smith

The effect of parentage, spacing, and sucker removal on precocity of hazelnut (Corylus avellana L.) seedlings was investigated. Wider spacing (1.2 vs. 0.6 m) within the row doubled the number of nuts per seedling in the 5th year but had no effect on nut count in the 3rd or 4th year, nor did it affect the percentage of seedlings bearing nuts in any of the three years. Differences among the four progenies were highly significant for number of clusters, number of nuts, and percentage of seedlings bearing nuts in all years and for number of years to first fruiting. The progeny `Barcelona' × OSU 55.097 had the most bearing seedlings in, the 3rd year but was outperformed by `Casina' × OSU 55.129 in the 4th and 5th years. Number of years to first fruiting varied from 4.3 for `Casina' × OSU 55.129 to 5.2 for `Tombul' × `Tonda di Giffoni'. Sucker removal increased both the percentage of seedlings bearing nuts and the number of nuts per seedlings, but the difference was not significant until the 5th year. Sucker removal reduced the length of the juvenile phase by 3 months. The use of precocious parents was more effective than sucker removal in shortening the juvenile period, while sucker removal and wide spacing within seedling rows increased the number of nuts produced by seedlings in the 5th year. Selection of seedlings for early initiation of bearing will shorten the breeding cycle, and the resulting new cultivars will be precocious when planted in commercial orchards.

Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 375
Author(s):  
Katarzyna Król ◽  
Magdalena Gantner

Hazelnut (Corylus avellana L.) is a popular tree nut worldwide, and in recent years, the production of hazelnuts has increased in many countries due to large investments improving agricultural techniques and the selection of new cultivars. Turkey, the leader of global hazelnut production, has shown that supply can strongly fluctuate, which leads to peak prices and market instability. In this review, an overview of the morphological traits, nutritional value, fatty acid composition, tocopherols, and future prospects of hazelnut production are described. Furthermore, information regarding hazelnuts from different geographical origins (Chile, Croatia, Iran, Italy, Oregon (US), Poland, Portugal, Serbia, Spain, and Turkey; total of 22 cultivars) to enhance the utilization of hazelnut cultivars from newly producing orchards and origins is comprehensively summarized.


HortScience ◽  
2007 ◽  
Vol 42 (3) ◽  
pp. 499-502 ◽  
Author(s):  
Lorenzo León ◽  
Raúl de la Rosa ◽  
Diego Barranco ◽  
Luis Rallo

The initial results of a comparative field trial of the first 15 selections of the olive (Olea europaea L.) breeding program of Cordoba, Spain, are presented. These selections came from crosses among ‘Arbequina’, ‘Frantoio’, and ‘Picual’ that were also included in the trial as controls. The trial was planted in July 2001 in a randomized block design with 16 replications and was systematically evaluated for earliness of bearing, vigor, crop, and yield efficiency from 2001 to 2005. Significant differences among selections were found for all characters measured. A greater proportion of early-bearing genotypes than in previous cultivar collections were found, whereas mean accumulated yield was similar to former evaluations. Therefore, the shorter unproductive period obtained in this work seems to indicate that the selection of seedlings for a short juvenile period has provided a shorter unproductive period of the subsequent new cultivars. No correlation between vigor at the seedling stage and vigor in the corresponding adult vegetative propagated selection was found. If the data presented here are confirmed further, some early-bearing cultivars could be suggested as new olive cultivars, the first obtained by cross-breeding in Spain. Additionally, some of them also show a low vigor and could be adapted to high-density hedgerow orchards.


1990 ◽  
Vol 29 (03) ◽  
pp. 200-204 ◽  
Author(s):  
J. A. Koziol

AbstractA basic problem of cluster analysis is the determination or selection of the number of clusters evinced in any set of data. We address this issue with multinomial data using Akaike’s information criterion and demonstrate its utility in identifying an appropriate number of clusters of tumor types with similar profiles of cell surface antigens.


2020 ◽  
Vol 7 (2) ◽  
pp. 34-41
Author(s):  
VLADIMIR NIKONOV ◽  
◽  
ANTON ZOBOV ◽  

The construction and selection of a suitable bijective function, that is, substitution, is now becoming an important applied task, particularly for building block encryption systems. Many articles have suggested using different approaches to determining the quality of substitution, but most of them are highly computationally complex. The solution of this problem will significantly expand the range of methods for constructing and analyzing scheme in information protection systems. The purpose of research is to find easily measurable characteristics of substitutions, allowing to evaluate their quality, and also measures of the proximity of a particular substitutions to a random one, or its distance from it. For this purpose, several characteristics were proposed in this work: difference and polynomial, and their mathematical expectation was found, as well as variance for the difference characteristic. This allows us to make a conclusion about its quality by comparing the result of calculating the characteristic for a particular substitution with the calculated mathematical expectation. From a computational point of view, the thesises of the article are of exceptional interest due to the simplicity of the algorithm for quantifying the quality of bijective function substitutions. By its nature, the operation of calculating the difference characteristic carries out a simple summation of integer terms in a fixed and small range. Such an operation, both in the modern and in the prospective element base, is embedded in the logic of a wide range of functional elements, especially when implementing computational actions in the optical range, or on other carriers related to the field of nanotechnology.


2020 ◽  
Vol 62 ◽  
pp. 32-38
Author(s):  
E. A. Dolmatov ◽  
R. B. Borzayev ◽  
A. N. Shaipov

The results of the study of the duration of the juvenile period of indigenous Chechen willow leaf pear genotypes (Pyrus salicifolia Pall.) are given in connection with the acceleration of the breeding process and the use of selected forms in pear breeding for high precocity. The studies were carried out in 2016-2019 at OOO “Orchards of Chechnya” in accordance with the Agreement on creative cooperation with the Russian Research Institute of Fruit Crop Breeding. The work was carried out in accordance with generally accepted programs and methods. The objects of the study were one-year and two-year-old pear seedlings obtained from sowing seeds of selected dwarf and low-growing local Chechen forms of willow pear (P. salicifolia Pall.), laying fruit buds on annual growths and seedlings of Caucasian pear (P. caucasica Fed.), 20 500 pcs. of each specie. The aim of the research was to study the potential of precocity of willow pear seedlings and to reveal of selected forms with the greatest degree of this trait. Stratified seeds were sown in the sowing department of the OOO “Orchards of Chechnya” production nursery in April, 2017. The seedlings were grown according to the common technology in dryland conditions on the plot with chestnut soil. The first fl owering of plants was noted in the spring, 2019. As a result of the research, for the first time on a large number of the experimental material it was found that in the off spring of the indigenous Chechen willow leaf pear genotypes, the selection of a little more than 2% of seedlings with a very short juvenile period (2 years) was possible. They are of great interest in accelerating the breeding process and in the selection of new pear varieties with high precocity. 20 willow leaf pear genotypes were selected for the further use in breeding for high precocity and as sources of the trait of short juvenile period.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
T M Mikkola ◽  
H Kautiainen ◽  
M Mänty ◽  
M B von Bonsdorff ◽  
T Kröger ◽  
...  

Abstract Purpose Mortality appears to be lower in family caregivers than in the general population. However, there is lack of knowledge whether the difference in mortality between family caregivers and the general population is dependent on age. The purpose of this study was to analyze all-cause mortality in relation to age in family caregivers and to study their cause-specific mortality using data from multiple Finnish national registers. Methods The data included all individuals, who received family caregiver's allowance in Finland in 2012 (n = 42 256, mean age 67 years, 71% women) and a control population matched for age, sex, and municipality of residence (n = 83 618). Information on dates and causes of death between 2012 and 2017 were obtained from the Finnish Causes of Death Register. Flexible parametric survival modeling and competing risk regression adjusted for socioeconomic status were used. Results The total follow-up time was 717 877 person-years. Family caregivers had lower all-cause mortality than the controls over the follow-up (8.1% vs. 11.6%) both among women (hazard ratio [HR]: 0.64, 95% CI: 0.61-0.68) and men (HR: 0.73, 95% CI: 0.70-0.77). Younger adult caregivers had equal or only slightly lower mortality than their controls, but after age 60, the difference increased markedly resulting in over 10% lower mortality in favor of the caregivers in the oldest age groups. Caregivers had lower mortality for all the causes of death studied, namely cardiovascular, cancer, neurological, external, respiratory, gastrointestinal and dementia than the controls. Of these, the lowest was the risk for dementia (subhazard ratio=0.29, 95%CI: 0.25-0.34). Conclusions Older family caregivers have lower mortality than the age-matched controls from the general population while younger caregivers have similar mortality to their peers. This age-dependent advantage in mortality is likely to reflect selection of healthier individuals into the family caregiver role. Key messages The difference in mortality between family caregivers and the age-matched general population varies considerably with age. Advantage in mortality observed in family caregiver studies is likely to reflect the selection of healthier individuals into the caregiver role, which underestimates the adverse effects of caregiving.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yağmur Demircan Yalçın ◽  
Taylan Berkin Töral ◽  
Sertan Sukas ◽  
Ender Yıldırım ◽  
Özge Zorlu ◽  
...  

AbstractWe report the development of a lab-on-a-chip system, that facilitates coupled dielectrophoretic detection (DEP-D) and impedimetric counting (IM-C), for investigating drug resistance in K562 and CCRF-CEM leukemia cells without (immuno) labeling. Two IM-C units were placed upstream and downstream of the DEP-D unit for enumeration, respectively, before and after the cells were treated in DEP-D unit, where the difference in cell count gave the total number of trapped cells based on their DEP characteristics. Conductivity of the running buffer was matched the conductivity of cytoplasm of wild type K562 and CCRF-CEM cells. Results showed that DEP responses of drug resistant and wild type K562 cells were statistically discriminative (at p = 0.05 level) at 200 mS/m buffer conductivity and at 8.6 MHz working frequency of DEP-D unit. For CCRF-CEM cells, conductivity and frequency values were 160 mS/m and 6.2 MHz, respectively. Our approach enabled discrimination of resistant cells in a group by setting up a threshold provided by the conductivity of running buffer. Subsequent selection of drug resistant cells can be applied to investigate variations in gene expressions and occurrence of mutations related to drug resistance.


2019 ◽  
Vol 9 (10) ◽  
pp. 2065 ◽  
Author(s):  
Jonguk Kim ◽  
Hafeezur Rehman ◽  
Wahid Ali ◽  
Abdul Muntaqim Naji ◽  
Hankyu Yoo

In extensively used empirical rock-mass classification systems, the rock-mass rating (RMR) and tunneling quality index (Q) system, rock-mass quality, and tunnel span are used for the selection of rock bolt length and spacing and shotcrete thickness. In both systems, the rock bolt spacing and shotcrete thickness selection are based on the same principle, which is used for the back-calculation of the rock-mass quality. For back-calculation, there is no criterion for the selection of rock-bolt-spacing-based rock-mass quality weightage and shotcrete thickness along with tunnel-span-based rock-mass quality weightage. To determine this weightage effect during the back-calculation, five weightage cases are selected, explained through example, and applied using published data. In the RMR system, the weightage effect is expressed in terms of the difference between the calculated and back-calculated rock-mass quality in the two versions of RMR. In the Q system, the weightage effect is presented in plots of stress reduction factor versus relative block size. The results show that the weightage effect during back-calculation not only depends on the difference in rock-bolt-spacing-based rock-mass quality and shotcrete along with tunnel-span-based rock-mass quality, but also on their corresponding values.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jia-Rou Liu ◽  
Po-Hsiu Kuo ◽  
Hung Hung

Large-p-small-ndatasets are commonly encountered in modern biomedical studies. To detect the difference between two groups, conventional methods would fail to apply due to the instability in estimating variances int-test and a high proportion of tied values in AUC (area under the receiver operating characteristic curve) estimates. The significance analysis of microarrays (SAM) may also not be satisfactory, since its performance is sensitive to the tuning parameter, and its selection is not straightforward. In this work, we propose a robust rerank approach to overcome the above-mentioned diffculties. In particular, we obtain a rank-based statistic for each feature based on the concept of “rank-over-variable.” Techniques of “random subset” and “rerank” are then iteratively applied to rank features, and the leading features will be selected for further studies. The proposed re-rank approach is especially applicable for large-p-small-ndatasets. Moreover, it is insensitive to the selection of tuning parameters, which is an appealing property for practical implementation. Simulation studies and real data analysis of pooling-based genome wide association (GWA) studies demonstrate the usefulness of our method.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Yiwen Zhang ◽  
Yuanyuan Zhou ◽  
Xing Guo ◽  
Jintao Wu ◽  
Qiang He ◽  
...  

The K-means algorithm is one of the ten classic algorithms in the area of data mining and has been studied by researchers in numerous fields for a long time. However, the value of the clustering number k in the K-means algorithm is not always easy to be determined, and the selection of the initial centers is vulnerable to outliers. This paper proposes an improved K-means clustering algorithm called the covering K-means algorithm (C-K-means). The C-K-means algorithm can not only acquire efficient and accurate clustering results but also self-adaptively provide a reasonable numbers of clusters based on the data features. It includes two phases: the initialization of the covering algorithm (CA) and the Lloyd iteration of the K-means. The first phase executes the CA. CA self-organizes and recognizes the number of clusters k based on the similarities in the data, and it requires neither the number of clusters to be prespecified nor the initial centers to be manually selected. Therefore, it has a “blind” feature, that is, k is not preselected. The second phase performs the Lloyd iteration based on the results of the first phase. The C-K-means algorithm combines the advantages of CA and K-means. Experiments are carried out on the Spark platform, and the results verify the good scalability of the C-K-means algorithm. This algorithm can effectively solve the problem of large-scale data clustering. Extensive experiments on real data sets show that the accuracy and efficiency of the C-K-means algorithm outperforms the existing algorithms under both sequential and parallel conditions.


Sign in / Sign up

Export Citation Format

Share Document