scholarly journals Carbohydrate Balance and Accumulation during Development of Near-isogenic Tomato Lines Differing in the AGPase-L1 Allele

2009 ◽  
Vol 134 (1) ◽  
pp. 134-140 ◽  
Author(s):  
Marina Petreikov ◽  
Lena Yeselson ◽  
Shmuel Shen ◽  
Ilan Levin ◽  
Arthur A. Schaffer ◽  
...  

Soluble sugar accumulation is a major determinant of tomato (Solanum lycopersicum) fruit quality. One strategy of increasing sugar levels in the mature fruit is via the increase of the transient starch pool in the immature fruit, which is subsequently degraded to contribute to its soluble sugar levels. ADP-glucose pyrophosphorylase [AGPase (E.C. 2.7.7.27)] is a limiting enzyme in starch synthesis and we therefore developed introgression lines of cultivated tomato harboring the wild species (Solanum habrochaites) allele for the regulatory large subunit (L1H ) of this heterotetrameric enzyme. Comparison of numerous near-isogenic lines of tomato segregating for the L1 allele, during multiple seasons, showed that the wild species allele led to an increase in fruit total soluble solids concentration (TSS) without a concomitant decrease in fruit size. Rather, in practically all lines studied, fruit size increased together with TSS, leading to an even larger increase in TSS × yield. A comparative developmental study of fruit carbohydrates, starch, and sugars between genotypes showed that the wild species allele led to increases in fruit size, carbohydrate concentration, and carbohydrate content of the whole fruit unit. This was related to a large increase in the transient starch reservoir that, upon degradation, accounted for the subsequent increase in soluble sugars. These results are evidence that modifying fruit sink carbohydrate metabolism via a single rate-limiting enzymatic step can increase the net import of photoassimilate into the fruit.

2013 ◽  
Author(s):  
Alan B. Bennett ◽  
Arthur A. Schaffer ◽  
Ilan Levin ◽  
Marina Petreikov ◽  
Adi Doron-Faigenboim

The Original Objectives were modified and two were eliminated to reflect the experimental results: Objective 1 - Identify additional genetic variability in SlGLK2 and IPin wild, traditional and heirloom tomato varieties Objective 2 - Determine carbon balance and horticultural characteristics of isogenic lines expressing functional and non-functional alleles of GLKsand IP Background: The goal of the research was to understand the unique aspects of chloroplasts and photosynthesis in green fruit and the consequences of increasing the chloroplast capacity of green fruit for ripe fruit sugars, yield, flavor and nutrient qualities. By focusing on the regulation of chloroplast formation and development solely in fruit, our integrated knowledge of photosynthetic structures/organs could be broadened and the results of the work could impact the design of manipulations to optimize quality outputs for the agricultural fruit with enhanced sugars, nutrients and flavors. The project was based on the hypothesis that photosynthetic and non-photosynthetic plastid metabolism in green tomato fruit is controlled at a basal level by light for minimal energy requirements but fruit-specific genes regulate further development of robust chloroplasts in this organ. Our BARD project goals were to characterize and quantitate the photosynthesis and chloroplast derived products impacted by expression of a tomato Golden 2- like 2 transcription factor (US activities) in a diverse set of 31 heirloom tomato lines and examine the role of another potential regulator, the product of the Intense Pigment gene (IP activities). Using tomato Golden 2-like 2 and Intense Pigment, which was an undefined locus that leads to enhanced chloroplast development in green fruit, we sought to determine the benefits and costs of extensive chloroplast development in fruit prior to ripening. Major conclusions, solutions, achievements: Single nucleotide polymorphisms in the promoter, coding and intronicSlGLK2 sequences of 20 heirloom tomato lines were identified and three SlGLK2 promoter lineages were identified; two lineages also had striped fruit variants. Lines with striped fruit but no shoulders were not identified. Green fruit chlorophyll and ripe fruit soluble sugar levels were measured in 31 heirloom varieties and fruit size correlates with ripe fruit sugars but dark shoulders does not. A combination of fine mapping, recombinant generation, RNAseq expression and SNP calling all indicated that the proposed localization of a single locus IP on chr 10 was incorrect. Rather, the IP line harbored 11 separate introgressions from the S. chmielewskiparent, scattered throughout the genome. These introgressions harbored ~3% of the wild species genome and no recombinant consistently recovered the IP parental phenotype. The 11 introgressions were dissected into small combinations in segregating recombinant populations. Based on these analyses two QTL for Brix content were identified, accounting for the effect of increased Brix in the IP line. Scientific and agricultural implications: SlGLK2 sequence variation in heirloom tomato varieties has been identified and can be used to breed for differences in SlGLK2 expression and possibly in the green striped fruit phenotype. Two QTL for Brix content have been identified in the S. chmielewskiparental line and these can be used for increasing soluble solids contents in breeding programs. 


2003 ◽  
Vol 60 (2) ◽  
pp. 239-244 ◽  
Author(s):  
José Carlos da Silva ◽  
José Donizeti Alves ◽  
Amauri Alves de Alvarenga ◽  
Marcelo Murad Magalhães ◽  
Dárlan Einstein do Livramento ◽  
...  

One management practice of which the efficiency has not yet been scientifically tested is spraying coffee plants with diluted sucrose solutions as a source of carbon for the plant. This paper evaluates the effect of foliar spraying with sugar on the endogenous level of carbohydrates and on the activities of invertase and sucrose synthase in coffee (Coffea arabica L.) seedlings with reduced (low) and high (normal) levels of carbon reserve. The concentrations used were 0.5 and 1.0% sucrose, and water as a control. The use of sucrose at 1.0% caused an increase in the concentration of total soluble sugars in depauperate plants, as well as increased the activity of the following enzymes: cell wall and vacuole acid invertase, neutral cytosol invertase and sucrose synthase. In plants with high level of carbon reserve, no increments in total soluble sugar levels or in enzymatic activity were observed. Regardless of treatments or plants physiological state, no differences in transpiration or stomatal conductance were observed, demonstrating the stomatal control of transpiration. Photosynthesis was stimulated with the use of 0.5 and 1.0 % sucrose only in depauperate plants. Coffee seedling spraying with sucrose is only efficient for depauperate plants, at the concentration of 1.0%.


2002 ◽  
Vol 42 (1) ◽  
pp. 93 ◽  
Author(s):  
A. R. Granger ◽  
D. R. C. Traeger

A 1% solution of antitranspirant and a 0.3% solution of vegetable oil were applied to cherry trees before rainfall during the 3 weeks preceding harvest to evaluate their efficacy in reducing fruit damaged by cracking in field experiments in South Australia from 1993 to 1998. Between 2 and 14% of fruit were cracked on untreated trees during this period. From 6 to 10% less cracked fruit were found in 2 of the 5 seasons following the application of antitranspirant and oil sprays. In the other 3 seasons, levels of cracked fruit were not significantly different between treatments. In the 2 driest seasons, treatment with oil or antitranspirant resulted in larger fruit than on untreated trees, and as in previous studies this was thought to be a result of reduced water loss. In 4 years, total soluble solids content of fruit were similar in all treatments, but in 1996–97 controls had significantly higher sugar levels than the treated fruit. This being the driest year during the study, it is thought that greater water loss occurred on controls leading to a higher concentration of total soluble sugars. Material costs of oil at A$96/ha per application is less, compared with antitranspirant that cost $4000/ha per application.


2020 ◽  
Vol 21 (19) ◽  
pp. 7258
Author(s):  
Magda Formela-Luboińska ◽  
Dorota Remlein-Starosta ◽  
Agnieszka Waśkiewicz ◽  
Zbigniew Karolewski ◽  
Jan Bocianowski ◽  
...  

The primary aim of this study was to determine the relationship between soluble sugar levels (sucrose, glucose, or fructose) in yellow lupine embryo axes and the pathogenicity of the hemibiotrophic fungus Fusarium oxysporum f. sp. Schlecht lupini. The first step of this study was to determine the effect of exogenous saccharides on the growth and sporulation of F. oxysporum. The second one focused on estimating the levels of ergosterol as a fungal growth indicator in infected embryo axes cultured in vitro on sugar containing-medium or without it. The third aim of this study was to record the levels of the mycotoxin moniliformin as the most characteristic secondary metabolite of F. oxysporum in the infected embryo axes with the high sugar medium and without it. Additionally, morphometric measurements, i.e., the length and fresh weight of embryo axes, were done. The levels of ergosterol were the highest in infected embryo axes with a sugar deficit. At the same time, significant accumulation of the mycotoxin moniliformin was recorded in those tissues. Furthermore, it was found that the presence of sugars in water agar medium inhibited the sporulation of the pathogenic fungus F. oxysporum in relation to the control (sporulation of the pathogen on medium without sugar), the strongest inhibiting effect was observed in the case of glucose. Infection caused by F. oxysporum significantly limited the growth of embryo axes, but this effect was more visible on infected axes cultured under sugar deficiency than on the ones cultured with soluble sugars. The obtained results thus showed that high sugar levels may lead to reduced production of mycotoxins by F. oxysporum, limiting infection development and fusariosis.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11538
Author(s):  
Yu-fei Li ◽  
Weijia Jiang ◽  
Chunhong Liu ◽  
Yuqi Fu ◽  
Ziyuan Wang ◽  
...  

Kiwifruit (Actinidia) is becoming increasingly popular worldwide due to its favorable flavour and high vitamin C content. However, quality parameters vary among cultivars. To determine the differences in quality and metabolic parameters of kiwifruit, we monitored the growth processes of ‘Kuilv’ (Actinidia arguta), ‘Hongyang’ (Actinidia chinensis) and ‘Hayward’ (Actinidia deliciosa). We found that ‘Kuilv’ required the shortest time for fruit development, while ‘Hayward’ needed the longest time to mature. The fruit size of ‘Hayward’ was the largest and that of ‘Kuilv’ was the smallest. Furthermore, ‘Hongyang’ showed a double-S shape of dry matter accumulation, whereas ‘Kuilv’ and ‘Hayward’ showed a linear or single-S shape pattern of dry matter accumulation during development. The three cultivars demonstrated the same trend for total soluble solids accumulation, which did not rise rapidly until 90–120 days after anthesis. However, the accumulation of organic acids and soluble sugars varied among the cultivars. During later fruit development, the content of glucose, fructose and quinic acid in ‘Kuilv’ fruit was far lower than that in ‘Hongyang’ and ‘Hayward’. On the contrary, ‘Kuilv’ had the highest sucrose content among the three cultivars. At maturity, the antioxidative enzymatic systems were significantly different among the three kiwifruit cultivars. ‘Hongyang’ showed higher activities of superoxide dismutase than the other cultivars, while the catalase content of ‘Hayward’ was significantly higher than that of ‘Hongyang’ and ‘Kuilv’. These results provided knowledge that could be implemented for the marketing, handling and post-harvest technologies of the different kiwifruit cultivars.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2198
Author(s):  
Wenfang Ma ◽  
Baiyun Li ◽  
Litong Zheng ◽  
Yunjing Peng ◽  
Rui Tian ◽  
...  

Organic acids and soluble sugars are the major determinants of fruit organoleptic quality. Additionally, DNA methylation has crucial regulatory effects on various processes. However, the epigenetic modifications in the regulation of organic acid and soluble sugar accumulation in apple fruits remain uncharacterized. In this study, DNA methylation and the transcriptome were compared between ‘Honeycrisp’ and ‘Qinguan’ mature fruits, which differ significantly regarding soluble sugar and organic acid contents. In both ‘Honeycrisp’ and ‘Qinguan’ mature fruits, the CG context had the highest level of DNA methylation, and then CHG and CHH contexts. The number and distribution of differentially methylated regions (DMRs) varied among genic regions and transposable elements. The DNA methylation levels in all three contexts in the DMRs were significantly higher in ‘Honeycrisp’ mature fruits than in ‘Qinguan’ mature fruits. A combined methylation and transcriptome analysis revealed a negative correlation between methylation levels and gene expression in DMRs in promoters and gene bodies in the CG and CHG contexts and in gene bodies in the CHH context. Two candidate genes (MdTSTa and MdMa11), which encode tonoplast-localized proteins, potentially associated with fruit soluble sugar contents and acidity were identified based on expression and DNA methylation levels. Overexpression of MdTSTa in tomato increased the fruit soluble sugar content. Moreover, transient expression of MdMa11 in tobacco leaves significantly decreased the pH value. Our results reflect the diversity in epigenetic modifications influencing gene expression and will facilitate further elucidating the complex mechanism underlying fruit soluble sugar and organic acid accumulation.


2013 ◽  
Vol 13 (57) ◽  
pp. 7415-7427
Author(s):  
V Nyau ◽  
◽  
EP Mwanza ◽  
HB Moonga ◽  
◽  
...  

Beekeeping is one of the income generating activities in many parts of the rural areas of Zambia and is being promoted by both the government and nongovernmental organizations. The main benefit of beekeeping is the production of honey and beeswax which are valuable sources of income for the small-holder farmers. Honey is a sweet liquid gathered by honey bees from nectar or other secretions of plants which they transform by addition of enzymes and evaporation of water. Beekeeping also plays an important role in protecting the natural environment and gives the communities other economic benefits from the forests as they have a vested interest in protecting trees that are a source for their honey. In the recent past, Zambian farmers involved in this beekeeping have adopted modern bee keeping approaches that involve the use of modern beehives such as the log, mud, standard wood and adjusted wood as opposed to the traditional bark type. In order to ascertain the effect of the beehive type on the quality, honey harvested from these beehives in Kapiri Mposhi area of Zambia was investigated for selected quality characteristics. The investigated parameters included ash, moisture, pH, total soluble solids and soluble sugars. Ash content of the honey is important because it represents its mineral content and forms part of proximate analysis for nutritional evaluation. The ash content ranged from 0.198 and 0.271%, pH 4.26 and 4.44, moisture 14.9 and 16.4%, total soluble solids 83.6 and 85.7% and soluble sugar 81.6 and 83.4%. The findings from the study demonstrated that the beehive type did not have a significant (P > 0.05) effect on all the selected quality characteristics investigated. Furthermore, comparisons of the findings on honey quality characteristics to the guidelines stipulated by the Codex Alimentarius and European Union (EU) standards showed conformity to these standards.


2004 ◽  
Vol 129 (6) ◽  
pp. 881-889 ◽  
Author(s):  
Graham H. Barry ◽  
William S. Castle ◽  
Frederick S. Davies

Citrus rootstocks have well-known effects on tree size, crop load, fruit size, and various fruit quality factors. Fruit from trees budded on invigorating rootstocks are generally larger with lower soluble solids concentration (SSC) and titratable acidity compared to fruit from trees budded on less invigorating rootstocks. Although it is unclear how rootstocks exert their influence on juice quality of Citrus L. species, plant water relations are thought to play a central role. In addition, the larger fruit size associated with invigorating rootstocks and the inverse relationship between SSC and fruit size implies that fruit borne on trees on invigorating rootstocks have lower SSC due to dilution effects in larger fruit. To determine how rootstock type affects sugar accumulation in fruit of Citrus species, controlled water-deficit stress was applied to mature `Valencia' sweet orange [C. sinensis (L.) Osb.] trees on Carrizo citrange [C. sinensis × Poncirus trifoliata (L.) Raf.] or rough lemon (C. jambhiri Lush.) rootstocks. Withholding water from the root zone of citrus trees during stage II of fruit development decreased midday stem water potential and increased the concentrations of primary osmotica, fructose and glucose. Sucrose concentration was not affected, suggesting that sucrose hydrolysis took place. Increased concentrations of sugars and SSC in fruit from moderately water-stressed trees occurred independently of fruit size and juice content. Thus, passive dehydration of juice sacs, and concentration of soluble solids, was not the primary cause of differences in sugar accumulation. Controlled water-deficit stress caused active osmotic adjustment in fruit of `Valencia' sweet orange. However, when water-deficit stress was applied later in fruit development (e.g., stage III) there was no increase in sugars or SSC. The evidence presented supports the hypothesis that differential sugar accumulation of citrus fruit from trees on rootstocks of contrasting vigor and, hence, plant water relations, is caused by differences in tree water status and the enhancement of sucrose hydrolysis into component hexose sugars resulting in osmotic adjustment. Therefore, inherent rootstock differences affecting plant water relations are proposed as a primary cause of differences in sugar accumulation and SSC among citrus rootstocks.


2020 ◽  
Author(s):  
Sarah Courbier ◽  
Sanne Grevink ◽  
Emma Sluijs ◽  
Pierre-Olivier Bonhomme ◽  
Kaisa Kajala ◽  
...  

SummaryPlants lacking phytochrome photoreceptors display elevated soluble sugar levels in leaves. Although pathogens principally feed on sugars supplied by the plant, the link between increased plant sugar levels upon phytochrome inactivation and disease development has not been considered.Tomato plants were exposed to control white LED (WL) or a combination of white and far-red LED (WL+FR) light, to inactivate phytochrome signaling and modulate soluble sugar levels. We also experimentally manipulated internal sugar levels by either supplementing glucose or inhibiting photosynthesis in tomato leaflets prior to performing soluble sugar quantifications or bioassays with pathogens.Tomato plants exposed to WL+FR or lacking phytochrome B (phyB1phyB2 double mutants) show enhanced levels of soluble sugars, especially glucose and fructose, in their leaves. The jasmonic acid biosynthesis mutant def1 also has elevated soluble sugar levels, which could be rescued by exogenous methyl-jasmonate application. This indicates an interplay between JA signaling and primary metabolism.The increase in soluble sugar levels in tomato leaves upon phytochrome inactivation is regulated in a JA-dependent manner. Our data stress the importance of primary metabolism in the FR-induced susceptibility in tomato that could contribute to promote plant resistance when grown at high density.


HortScience ◽  
2020 ◽  
Vol 55 (10) ◽  
pp. 1698-1702
Author(s):  
Guang-Lian Liao ◽  
Xiao-Biao Xu ◽  
Qing Liu ◽  
Min Zhong ◽  
Chun-Hui Huang ◽  
...  

Jinyan (Actinidia eriantha × A. chinensis) is one of the gold-fleshed kiwifruit cultivars currently being promoted in south China. However, its fruit dry matter is usually less than 16%, which seriously affects fruit quality including taste and flavor. This causes a financial loss to growers: not only are the prices paid for the fruit low because of their bad reputation for quality, but some orchards have been removed. Improvement of fruit quality is essential. In this study, a method is described for squeezing and twisting flowering shoots before flowering and removing the distal vegetative parts of flowering shoots after fruit set. The effects on fruit quality were determined. The dry matter of fruit was increased by 6.6%. Fruit size also increased as did the chlorophyll a content and the chlorophyll:carotenoid ratio. The significantly increased fruit dry matter, resulting in significant increases in fruit soluble solids concentrations (P < 0.01), thereby possibly improving fruit taste. Fruit weight, fruit length, and carotenoid and ascorbic acid concentrations were significantly enhanced in comparison with controls (P < 0.01), increasing by 20%, 7%, 12%, and 19%, respectively. However, there was no significant difference in soluble sugar concentrations, titratable acid concentrations, and the reduced chlorophyll b concentrations. This research provides a practical method to increase fruit dry matter, and hence a way to allow fruit quality to reach commercial requirements for cultivars such as Jinyan, which under previous management systems had significant shortcomings in fruit flavor and taste.


Sign in / Sign up

Export Citation Format

Share Document