scholarly journals Pecan Kernel Phenolics Content and Antioxidant Capacity Are Enhanced by Mechanical Pruning and Higher Fruit Position in the Tree Canopy

2020 ◽  
Vol 145 (3) ◽  
pp. 193-202
Author(s):  
Yi Gong ◽  
Ronald B. Pegg ◽  
Adrian L. Kerrihard ◽  
Brad E. Lewis ◽  
Richard J. Heerema

Pecan (Carya illinoinensis) is a tree nut native to North America. Although inhibited light exposure (most specifically as a result of overlapping tree canopies) has been shown to impair yield, the effect of this factor on nut antioxidant properties remains unknown. This study investigated effects of mechanical pruning and canopy height position of fruit on pecan kernel antioxidant contents and capacity. Beginning in 2006, trees in a ‘Western’ pecan orchard in New Mexico were subjected to three mechanical pruning frequency treatments (annual, biennial, and triennial) paralleling conventional practices, while other trees were maintained as unpruned controls. During the 2012 to 2014 seasons, pecans were sampled at fruit maturity from three canopy height zones (“low,” “middle,” and “high,” corresponding to 1.5 to 3.0 m, 3.0 to 4.5 m, and 4.5 to 6.0 m above the orchard floor). In vitro phenolics contents and antioxidant capacities of the nutmeats were evaluated by total phenolics content (TPC) and oxygen radical absorbance capacity (H-ORACFL), respectively. Soluble ester- and glycoside-bound phenolics were quantified by reversed-phase high-performance liquid chromatography (HPLC). For both TPC and H-ORACFL, results determined pruned samples had significantly higher values than unpruned samples (P < 0.001 for both comparisons), and that samples of “high” canopy height were significantly greater than those of “middle” height, which were in turn greater than those of “low” height (P < 0.001 for all comparisons). HPLC findings showed that in all three phenolic fractions (free, esterified, and glycoside-bound phenolics), nuts acquired from pruned trees had substantially greater concentrations of ellagic acid and its derivatives. Our findings indicate mechanical pruning of pecan trees and higher tree canopy position of fruit increase nut antioxidant properties.

2020 ◽  
Vol 11 (4) ◽  
pp. 5373-5381
Author(s):  
Iskandarsyah ◽  
Camelia Dwi Putri Masrijal ◽  
Harmita

A hormonal contraception progestin such as medroxyprogesterone acetate (MPA) is used to helps regulate ovulation thus as a part of contraception hormone therapy as a method of birth control. This study aimed to formulate, characterized, evaluated transfersomal gel containing medroxyprogesterone acetate and to increased subcutaneous penetration of medroxyprogesterone acetate. In this research, three transfersomes formulas were prepared and optimized, e.g. F1, F2 and F3 with phosphatidylcholine: tween 80 concentration were 90:10; 85:15; and 75:25, respectively. F2 was the best formula with the highest entrapment efficiency 81.20±0.42 %, Average 81.35 ±0.78 nm, morphology of vesicles were spheres, indeks polidispersity 0.198±0.012 and zeta potential was -34.83±0.64 mV. The transpersonal gel (FGT) containing F2, and non-transpersonal gel containing MPA in methanol(FG) were prepared. In vitro penetration test were conducted to both of them using Franz Diffusion cells. Analysis of medroxyprogesterone acetate used a high performance liquid chromatographic (HPLC) method with an ultraviolet detector on reversed-phase C18, 5µm; 150 x 4.6 mmcolumn; using acetonitrile-0.1% formic acid (60:40/v:v) and was detected at a wavelength of 240 nm with flow rate at 1.0 mL/min. Gel stability evaluation results showed that FGT was better than FG on pH stability, viscosity and rheological properties. Based on in vitro penetration study, cumulative subcutaneous penetration of medroxyprogesterone acetate from FGT was 2356.45 ± 197.73 ng.cm-2 and from FG 359.15 ± 13.60 ng.cm-2, respectively. Flux value for FGT and FG were 112.77 ± 6,47 ng.cm-2.hr-1and 17.99 ± 4.81 ng.cm-2.hr-1, respectively. It could be concluded that transfersomal gel medroxyprogesterone acetate for transdermal drug delivery increased cumulative transdermal penetration of medroxyprogesterone acetate by six times more than non-transfersomal gel dosage form.


2019 ◽  
Vol 55 (No. 2) ◽  
pp. 93-101 ◽  
Author(s):  
Francisco Teodoro Arroyo Cordero ◽  
Rocío Rodríguez-Arcos ◽  
Ana Jiménez-Araujo ◽  
Rafael Guillén-Bejarano ◽  
María José Basallote ◽  
...  

Glucosinolate extracts from sprouts of common Brassica nigra, B. juncea cv. Scala, B. carinata cv. Eleven, and Sinapis alba cv. Ludique were analysed by reversed phase high-performance liquid chromatography-diode array detection-mass spectrometry. The effect of the glucosinolate–myrosinase system on in vitro mycelial growth of Phytophthora cinnamomi Rands and Pythium spiculum B. Paul was assessed. Likewise, sinigrin and sinalbin monohydrate commercial standards were also tested. The extracts from B. carinata, which contained 159 mmol/g plant DW equivalent (85% sinigrin, 5% gluconapin, and 3% glucotropaeolin), were the most effective against Phytophthora and Pythium isolates used in this study. However, the extract from S. alba, which contained 1 180 mmol/g (100% sinalbin), did not inhibit the mycelial growth of the isolates tested. The use of the glucosinolate-myrosinase system provides important additional information to advance in the implementation of field application of brassicaceous amendments for the control of soil-borne pathogens.


Antioxidants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 102 ◽  
Author(s):  
Emanuela Monteiro Coelho ◽  
Marcelo Eduardo Alves Olinda de Souza ◽  
Luiz Claudio Corrêa ◽  
Arão Cardoso Viana ◽  
Luciana Cavalcanti de Azevêdo ◽  
...  

The present work had the objective of producing liqueurs from mango peels (varieties “Haden” and “Tommy Atkins”) by processes of alcoholic maceration and maceration with pectinase, as well as to evaluate bioactive compounds by reversed-phase high-performance liquid chromatography coupled to diode array detection and fluorescence-detection (RP-HPLC/DAD/FD) and in vitro antioxidant activity (AOX), for by-product potential reuse. Alcoholic maceration in wine ethanol (65% v/v) produced liqueurs with higher phytochemical and AOX content. Maceration with pectinase resulted in liqueurs with higher quercetin-3-O-glucopyranoside content. In relation to mango varieties, Haden liqueurs presented higher bioactive content than Tommy Atkins liqueurs. The liqueurs presented high antioxidant activity. The main bioactive compounds found were flavanols (epicatechin-gallate, epigallocatechin-gallate), flavonols (quercetin-3-O-glucopyranoside and rutin), and phenolic acids (gallic acid, o-coumaric acid, and syringic acid). The present study showed that the production of liqueur enabled the recovering of an important part of the bioactive content of mango peels, suggesting an alternative for the recovery of antioxidant substances from this by-product.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 505
Author(s):  
Valentina Amodeo ◽  
Mariangela Marrelli ◽  
Veronica Pontieri ◽  
Roberta Cassano ◽  
Sonia Trombino ◽  
...  

Spontaneous edible plants have an old history of use in popular traditions all around the world, and the rediscovery of these species could also be useful for the search of new drugs. Chenopodium album L. (Amaranthaceae) and Sisymbrium officinale (L.) Scop. (Brassicaceae) are two annual plants traditionally used both as food and herbal remedies against inflammatory disorders. In this work, the potential anti-inflammatory and anti-arthritic activities of these plant species have been investigated, together with their antioxidant potential. The phytochemical composition was assessed as well by means of gas chromatography coupled to mass spectrometry (GC-MS) and high performance thin layer chromatography (HPTLC). The antioxidant properties were assessed using the DPPH and β-carotene bleaching test. The ability of extracts to protect against lipid peroxidation was also examined in rat-liver microsomal membranes. All the samples showed a preservation of antioxidant activity up to 60 min. A significant inhibitory activity on the production of the pro-inflammatory mediator nitric oxide was induced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells by the dichloromethane fraction of C. album extract, with an IC50 value equal to 81.7 ± 0.9 μg/mL. The same sample showed also a concentration-dependent anti-denaturation effect on heat-treated bovine serum albumin (IC50 = 975.6 ± 5.5 μg/mL), even if the best in vitro anti-arthritic activity was observed for the dichloromethane fraction of S. officinale extract, with an IC50 value of 680.9 ± 13.2 μg/mL.


Proceedings ◽  
2019 ◽  
Vol 41 (1) ◽  
pp. 85
Author(s):  
Silvana Rodriguez ◽  
Rosa Ana Sueiro ◽  
Ana Paula Murray ◽  
José Manuel Leiro

The essential oils (EOs) from the leaves of Schinus areira and one of its components, globulol, were studied for their antioxidant, antimutagenic and antipromutagenic activities. The chemical composition of the EOs obtained using hydrodistillation was determined using gas chromatography-mass spectrometry (GC-MS), and fractionated using reversed phase high performance liquid chromatography (RP-HPLC). The active compound (16.61%) isolated was identified by comparison of its 1H and 13C NMR spectroscopy with those reported in the literature. The antioxidant activity of the EOs and globulol were determined using two methods: crocin bleaching inhibition (Trolox Equivalent Value, TEV Krel = 1.16 ± 0.11 vs. 1.24 ± 0.22) and scavenging of the DPPH radical (IC50 = 38.75 ± 2.5 μg/mL vs. 5.60 ± 0.9 μg/mL). The antimutagenic and antipromutagenic activities were evaluated in vitro and ex vivo, using the Ames assay with five strains of Salmonella typhimurium with and without exogenous metabolic activation (rat liver fraction S9), against different mutagens. The result determined that globulol and EOs of S. areira at the applied doses do not exhibit any mutagenic effect and showed the highest antioxidant activity.


2021 ◽  
Vol 15 (3) ◽  
pp. 175-194
Author(s):  
Boutaina Addoum ◽  
◽  
Bouchra El khalfi ◽  
Mohamed Idiken ◽  
Souraya Sakoui ◽  
...  

Background: Antioxidants are developed to assist the immune system and overcome oxidative stress, the aggression of cellular constituents due to imbalance between reactive oxygen species and the inner antioxidant system. The main objective of this study was to search for new and potent antioxidants to protect humans against diseases associated with oxidative stress. Methods: In this study, three pyrano-[2,3-c]-pyrazole derivatives were synthesized via Multicomponent Reaction (MCR) approach and were characterized, using a melting point, High-Performance Liquid Chromatography (HPLC), and spectroscopic analyses (IR; 1H-NMR; 13C-NMR). All of the generated compounds were screened for their antioxidant properties in vivo, using ciliate “Tetrahymena” as a model organism exposed to oxidative and nitrative stress. They were then studied in vitro by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays. Results: The results demonstrated that the three compounds (5a, b, c) are biologically active and possess potent antioxidant activities, especially the 5a and 5b derivatives. On the other hand, the in vitro bioassays revealed that the 5a derivative possessed a significant antioxidant activity much greater than ascorbic acid. Accordingly, the in silico data are consistent with the experimental data. Conclusion: These findings confirmed the potent antioxidant property of the synthesized compounds, providing us with new inspiration and challenges to design a library of pharmaceutical compounds with strong activity and low toxicity in the future.


2021 ◽  
Author(s):  
Maomei Luo ◽  
Chun Zeng ◽  
Shu Wang ◽  
Shanjun Cai

Abstract AimsTo establish the N-retinylidene-N-retinylethanolamine(A2E) and blue light induced RPE cells damage model to explore the regularity of distribution of A2E and the levels of reactive oxygen species(ROS).MethodsThe fourth to sixth generation of human RPE cells in vitro were divided into five groups randomly: control group, blue light group, A2E-loaded group, A2E-loaed+blue light group and A2E-loaded+blue light +nifedipine group. The levels of ROS in cytoplasm by DCFH-DA staining was assayed by flow cytometry. The concentration of A2E in cytoplasm and lysosomes were assayed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). The fluorescence intensity of A2E in lysosomes by Lysotracker redDND-99 staining was assayed by confocal laser scanning microscope. ResultsExposure to blue light and/or A2E could increase the levels of ROS in RPE cells, and nifedipine could inhibit oxidative stress response and reduce ROS levels. By HPLC-MS, it was found that A2E was not detected in the groups without load A2E, and A2E levels in cytoplasm and lysosomes decreased after light exposure. The green fluorescence produced by A2E loaded on RPE cells was mostly coincident with the red fluorescence labeled by lysosomes.ConclusionBlue light and A2E can increase the ROS levels of RPE cells and both have a synergistic effect. A2E is mainly concentrated in lysosomes, which is reduced by oxidation under blue light irradiation, damages lysosomal membrane with oxidized species of A2E, and leaks out from lysosomes.


Sign in / Sign up

Export Citation Format

Share Document