The Relationship between Karst Landforms, Hydrogeology and Fault Activity: The Fibreno Fault System (Central Italy)

2021 ◽  
Author(s):  
Michele Saroli ◽  
Matteo Albano ◽  
Marco Moro ◽  
Emanuela Falcucci ◽  
Stefano Gori ◽  
...  
2021 ◽  
Author(s):  
Michele Saroli ◽  
Matteo Albano ◽  
Marco Moro ◽  
Emanuela Falcucci ◽  
Stefano Gori ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1499
Author(s):  
Davide Fronzi ◽  
Francesco Mirabella ◽  
Carlo Cardellini ◽  
Stefano Caliro ◽  
Stefano Palpacelli ◽  
...  

The interaction between fluids and tectonic structures such as fault systems is a much-discussed issue. Many scientific works are aimed at understanding what the role of fault systems in the displacement of deep fluids is, by investigating the interaction between the upper mantle, the lower crustal portion and the upraising of gasses carried by liquids. Many other scientific works try to explore the interaction between the recharge processes, i.e., precipitation, and the fault zones, aiming to recognize the function of the abovementioned structures and their capability to direct groundwater flow towards preferential drainage areas. Understanding the role of faults in the recharge processes of punctual and linear springs, meant as gaining streams, is a key point in hydrogeology, as it is known that faults can act either as flow barriers or as preferential flow paths. In this work an investigation of a fault system located in the Nera River catchment (Italy), based on geo-structural investigations, tracer tests, geochemical and isotopic recharge modelling, allows to identify the role of the normal fault system before and after the 2016–2017 central Italy seismic sequence (Mmax = 6.5). The outcome was achieved by an integrated approach consisting of a structural geology field work, combined with GIS-based analysis, and of a hydrogeological investigation based on artificial tracer tests and geochemical and isotopic analyses.


Rural History ◽  
2014 ◽  
Vol 25 (2) ◽  
pp. 243-260 ◽  
Author(s):  
STUART OGLETHORPE

Abstract:This article focuses on the mechanisation of agriculture in central Italy in the thirty years or so after 1945. This provides a particular way of examining the major changes in the rural landscape in this period, especially the end of the sharecropping system. Land in these regions had for centuries been predominantly farmed under sharecropping contracts, but for political, economic, and demographic reasons this system, which had inhibited modernisation, entered a rapid decline. Whereas labour supply had previously exceeded demand, the reverse became the case, allowing sharecropping families more freedom in how they operated. Mechanisation was not a ‘push’ factor, but as the agricultural labour force contracted it was a necessary response. The article uses individual testimony to illustrate how tenant farmers started to work outside the sharecropping contract, some becoming outside contractors with other farms and supplying tractor hire. The mechanisation of agriculture was slow and uneven, but marked an irreversible change in the relationship between farming families and their land.


1969 ◽  
Vol 59 (1) ◽  
pp. 73-100
Author(s):  
Larry Gedney ◽  
Eduard Berg

Abstract A series of moderately severe earthquakes occurred in the vicinity of Fairbanks, Alaska, on the morning of June 21, 1967. During the following months, many thousands of aftershocks were recorded in order to outline the aftershock zone and to resolve the focal mechanism and its relation to the regional tectonic system. No fault is visible at the surface in this area. Foci were found to occupy a relatively small volume in the shape of an ablate cylinder tilted about 30° from the vertical. The center of the zone lay about 12 kilometers southeast of Fairbanks. Focal depths ranged from near-surface to 25 kilometers, although most were in the range 9-16 km. In the course of the investigation, it was found that the Jeffreys and Bullen velocity of 5.56 km/sec for the P wave in the upper crustal layer is very near the true value for this arec, and that the use of 1.69 for the Vp/Vs ratio gives good results in most cases. The proposed faulting mechanism involves nearly equal components of right-lateral strike slip, and normal faulting with northeast side downthrown on a system of sub-parallel faults striking N40°W. The fault surface appears to be curved—dipping from near vertical close to the surface to less steep northeast dips at greater depths. The relationship of this fault system with the grosser aspects of regional tectonism is not clear.


Author(s):  
Charlotte R. Potts

The construction of monumental temples and sanctuaries during the sixth century BC changed the appearance of cult sites and settlements in Archaic Tyrrhenian Italy. The relationship between monumental cult buildings and their settings, however, is not well understood. As will be discussed below, scholars have argued that the placement and orientation of Archaic temples was influenced by the terrain, pre-existing cult sites, ritual geography, and the requirements of those within settlements. It has also been unclear whether religious monumentalization followed recognizable topographical patterns, particular to each region, culture, or religion, or alternatively varied according to local needs and customs. Thus, although the archaeology of landscapes and settlements has become an increasingly common element of Latial and Etruscan studies, the religious dimension of these landscapes and cityscapes may benefit from further analysis. This chapter accordingly examines the topography of early monumental temples in Latium and Etruria both in terms of their position in the landscape and in relation to features such as votive deposits, roads, and other buildings. The first part of the chapter presents an overview of the organization and characteristics of settlements in central Italy in the seventh and sixth centuries BC to establish the context for the introduction of the first monumental temples. The second and third parts test hypotheses about the location of Archaic cult buildings against the archaeological evidence. It will be suggested that what at first appears to be great diversity may actually represent a variety of responses to the same concern, namely a desire to be accessible to visitors, travellers, and an increasingly mobile population. The fourth and final part uses these findings to argue that it may be timely to review traditional typologies for cult sites that are based upon topographical relationships with urban centres. The incorporation of landscape archaeology into Etruscan and Latial studies over the last five decades has generated new data and models for reconstructing regional settlement hierarchies, population densities, and relationships with the physical environment. It is now possible to recognize broad, if complex, patterns in the location and organization of settlements as well as changes to those patterns over time.


2020 ◽  
Vol 9 (11) ◽  
pp. 616
Author(s):  
Mauro De Donatis ◽  
Mauro Alberti ◽  
Mattia Cipicchia ◽  
Nelson Muñoz Guerrero ◽  
Giulio F. Pappafico ◽  
...  

Field work on the search and characterization of ground effects of a historical earthquake (i.e., the Cagli earthquake in 1781) was carried out using terrestrial and aerial digital tools. The method of capturing, organizing, storing, and elaborating digital data is described herein, proposing a possible workflow starting from pre-field project organization, through reiteration of field and intermediate laboratory work, to final interpretation and synthesis. The case of one of the most important seismic events in the area of the northern Umbria–Marche Apennines provided the opportunity to test the method with both postgraduate students and researchers. The main result of this work was the mapping of a capable normal fault system with a great number of observations, as well as a large amount of data, from difficult outcrop areas. A GIS map and a three-dimensional (3D) model, with the integration of subsurface data (i.e., seismic profiles and recent earthquake distribution information), allowed for a new interpretation of an extensional tectonic regime of this Apennines sector, similar to one of the southernmost areas of central Italy where recent earthquakes occurred on 2016.


2018 ◽  
Vol 34 (4) ◽  
pp. 1585-1610 ◽  
Author(s):  
Stefano Gori ◽  
Emanuela Falcucci ◽  
Fabrizio Galadini ◽  
Paolo Zimmaro ◽  
Alberto Pizzi ◽  
...  

The three mainshock events (M6.1 24 August, M5.9 26 October, and M6.5 30 October 2016) in the Central Italy earthquake sequence produced surface ruptures on known segments of the Mt. Vettore–Mt. Bove normal fault system. As a result, teams from Italian national research institutions and universities, working collaboratively with the U.S. Geotechnical Extreme Events Reconnaissance Association (GEER), were mobilized to collect perishable data. Our reconnaissance approach included field mapping and advanced imaging techniques, both directed towards documenting the location and extent of surface rupture on the main fault exposure and secondary features. Mapping activity occurred after each mainshock (with different levels of detail at different times), which provides data on the progression of locations and amounts of slip between events. Along the full length of the Mt. Vettore–Mt. Bove fault system, vertical offsets ranged from 0–35 cm and 70–200 cm for the 24 August and 30 October events, respectively. Comparisons between observed surface rupture displacements and available empirical models show that the three events fit within expected ranges.


2018 ◽  
Vol 34 (4) ◽  
pp. 1557-1583 ◽  
Author(s):  
Fabrizio Galadini ◽  
Emanuela Falcucci ◽  
Stefano Gori ◽  
Paolo Zimmaro ◽  
Daniele Cheloni ◽  
...  

The Central Italy earthquake sequence produced three main shocks: M6.1 24 August, M5.9 26 October, and M6.5 30 October 2016. Additional M5–5.5 events struck this territory on 18 January 2017 in the Campotosto area. Fault plane solutions for the main shocks exhibit normal faulting (characteristic of crustal extension occurring in the inner central Apennines). Significant evidence, including hypocenter locations, strike and dip angles of the moment tensors, inverted finite fault models (using GPS, interferometric aperture radar, and ground motion data), and surface rupture patterns, all point to the earthquakes having been generated on the Mt. Vettore–Mt. Bove fault system (all three main shocks) and on the Amatrice fault, in the northern sector of the Laga Mountains (portion of 24 August event). The earthquake sequence provides examples of both synthetic and antithetic ruptures on a single fault system (30 October event) and rupture between two faults (24 August event). We describe active faults in the region and their segmentation and present understanding of the potential for linkages between segments (or faults) in the generation of large earthquakes.


2020 ◽  
Vol 221 (1) ◽  
pp. 451-466 ◽  
Author(s):  
Qian Xu ◽  
Qiang Chen ◽  
Jingjing Zhao ◽  
Xianwen Liu ◽  
Yinghui Yang ◽  
...  

SUMMARY A sequence of earthquake events consisting of three large shocks occurred in Central Italy from August to October in 2016 with the duration of almost 2 months. The preliminary study on the seismic mechanism suggests that the sequence of events is the result from the activity of the SW dipping Mt Bove–Mt Vettore–Mt Gorzano normal fault system. For investigation and understanding of the coseismic faulting of the seismogenic fault alignment, we collect a set of comprehensive satellite observations including the Sentinel-1A, ALOS-2/PALSAR-2 and GPS data to map the coseismic surface deformation and estimate the source models in this study. The derived faulting model for the first Amatrice event is characterized by two distinct slip asperities suggesting that it is a predominantly normal dip-slip motion with slight strike-slip component. The second event, Visso earthquake is almost a purely normal rupture. The third Norcia event is dominated by the normal dip-slip rupture of the seismogenic fault, and has propagated up to the ground with significant slip. The three faulting models are then utilized to quantify the Coulomb failure stress (CFS) change over the seismic zone. First, the CFS change on the subsequent two seismogenic faults of the earthquake sequence is estimated, and the derived positive CFS change induced by the preceding earthquakes suggests that the early events have positive effects on triggering the subsequent seismicity. We then explore the response relation of the aftershocks including 961 events with magnitudes larger than M 3.0 to the CFS change over the seismic zone. It suggests that the rupture pattern of the aftershocks is similar to the major shocks with predominantly normal dip-slip. To assess the risk of the future seismic hazard, we analyse quantitatively the spatial distribution of aftershock occurrence and CFS transfer at the seismogenic depth, indicating that the ruptures of the three major shocks do partly release the accumulated strain on the associated fault alignment as well as the dense aftershock, but the CFS increase zone with few aftershocks in the southwest of the eastern Quaternary fault alignment of Central Italy poses the potential of further rupture. In particular, the distribution of aftershock migration also suggests that the north extension of the Mt Bove fault is the potential zone with rupture risk.


2017 ◽  
Vol 17 (11) ◽  
pp. 1885-1892 ◽  
Author(s):  
Giorgio De Guidi ◽  
Alessia Vecchio ◽  
Fabio Brighenti ◽  
Riccardo Caputo ◽  
Francesco Carnemolla ◽  
...  

Abstract. On 24 August 2016 a strong earthquake (Mw = 6.0) affected central Italy and an intense seismic sequence started. Field observations, DInSAR (Differential INterferometry Synthetic-Aperture Radar) analyses and preliminary focal mechanisms, as well as the distribution of aftershocks, suggested the reactivation of the northern sector of the Laga fault, the southern part of which was already rebooted during the 2009 L'Aquila sequence, and of the southern segment of the Mt Vettore fault system (MVFS). Based on this preliminary information and following the stress-triggering concept (Stein, 1999; Steacy et al., 2005), we tentatively identified a potential fault zone that is very vulnerable to future seismic events just north of the earlier epicentral area. Accordingly, we planned a local geodetic network consisting of five new GNSS (Global Navigation Satellite System) stations located a few kilometres away from both sides of the MVFS. This network was devoted to working out, at least partially but in some detail, the possible northward propagation of the crustal network ruptures. The building of the stations and a first set of measurements were carried out during a first campaign (30 September and 2 October 2016). On 26 October 2016, immediately north of the epicentral area of the 24 August event, another earthquake (Mw = 5.9) occurred, followed 4 days later (30 October) by the main shock (Mw = 6.5) of the whole 2016 summer–autumn seismic sequence. Our local geodetic network was fully affected by the new events and therefore we performed a second campaign soon after (11–13 November 2016). In this brief note, we provide the results of our geodetic measurements that registered the co-seismic and immediately post-seismic deformation of the two major October shocks, documenting in some detail the surface deformation close to the fault trace. We also compare our results with the available surface deformation field of the broader area, obtained on the basis of the DInSAR technique, and show an overall good fit.


Sign in / Sign up

Export Citation Format

Share Document