scholarly journals Drought and salinity stresses in barley: Consequences and mitigation strategies

Author(s):  
Ayman EL Sabagh ◽  
Akbar Hossain ◽  
Md. Shohidul Islam ◽  
Celaleddin Barutcular ◽  
Saddam Hussain ◽  
...  

Recent trends show reductions in crop productivity worldwide due to severe climatic change. Different abiotic stresses significantly affect the growth and development of plants, leading to decreased crop yields. Salinity and drought stresses are the most common abiotic stresses, especially in arid and semi–arid regions, and are major constraints for barley production. The present review attempts to provide comprehensive information related to barley plant responses and adaptations to drought and salinity stresses, including physiological and agronomic, in order to alleviate the adverse effect of stresses in barley. These stresses reduce assimilation rates, as they decrease stomatal conductance, disrupt photosynthetic pigments, reduce gas exchange, enhance production of reactive oxygen species, and lead to decreased plant growth and productivity. This review focuses on the strategies plants use to respond and adapt to drought and salinity stress. Plants utilize a range of physiological and biochemical mechanisms such as adaptation strategies, through which the adverse effects can be mitigated. These include soil management practices, crop establishment, as well as foliar application of anti-oxidants and growth regulators that maintain an appropriate level of water in the leaves to facilitate adjustment of osmotic and stomatal performance. The present review highlighted the adverse effect of drought and salinity stresses barley and their mitigation strategies for sustainable barley production under changing climate. They review also underscored that exogenous application of different antioxidants could play a significant role in the alleviation of salinity and drought stress in plant systems.

2021 ◽  
Author(s):  
Sara Minoli ◽  
Jonas Jägermeyr ◽  
Senthold Asseng ◽  
Christoph Müller

<p>Broad evidence is pointing at possible adverse impacts of climate change on crop yields. Due to scarce information about farming management practices, most global-scale studies, however, do not consider adaptation strategies.</p><p>Here we integrate models of farmers' decision making with crop biophysical modeling at the global scale to investigate how accounting for adaptation of crop phenology affects projections of future crop productivity under climate change. Farmers in each simulation unit are assumed to adapt crop growing periods by continuously selecting sowing dates and cultivars that match climatic conditions best. We compare counterfactual management scenarios, assuming crop calendars and cultivars to be either the same as in the reference climate – as often assumed in previous climate impact assessments – or adapted to future climate.</p><p>Based on crop model simulations, we find that the implementation of adapted growing periods can substantially increase (+15%) total crop production in 2080-2099 (RCP6.0). In general, summer crops are responsive to both sowing and harvest date adjustments, which result in overall longer growing periods and improved yields, compared to production systems without adaptation of growing periods. Winter wheat presents challenges in adapting to a warming climate and requires region-specific adjustments to pre and post winter conditions. We present a systematic evaluation of how local and climate-scenario specific adaptation strategies can enhance global crop productivity on current cropland. Our findings highlight the importance of further research on the readiness of required crop varieties.</p>


2018 ◽  
Vol 10 (8) ◽  
pp. 2665 ◽  
Author(s):  
Kieu N. Le ◽  
Manoj K. Jha ◽  
Jaehak Jeong ◽  
Philip W. Gassman ◽  
Manuel R. Reyes ◽  
...  

Will soil organic carbon (SOC) and yields increase for conservation management systems in tropical zones in response to the next 100 years? To answer the question, the Environmental Policy Integrated Climate (EPIC) model was used to study the effects of climate change, cropping systems, conservation agriculture (CA) and conservation tillage management practices on SOC and crop productivity in Kampong Cham, Cambodia. The EPIC model was successfully calibrated and validated for crop yields, biomass, SOC and nitrogen based on field data from a five-year field experiment. Historical weather (1994–2013) was used for baseline assessment versus mid-century (2046–2064) and late-century (2081–2100) climate projections generated by the Geophysical Fluids Dynamics Laboratory (GFDL) CM2.1 global climate model. The simulated results showed that upland rice yield would increase the most under the B1 scenario in mid-century for all treatments, followed by soybean and maize. Cassava yield only increased under CA treatment when cultivated as a continuous primary crop. Carbon sequestration was more sensitive to cropping systems and crop rotation than climate change. The results indicated that the rotated CA primary crop (maize) systems should be prioritized for SOC sequestration as well as for increasing crop productivity. In addition, rice systems may increase SOC compared to soybean and cassava.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 192 ◽  
Author(s):  
Domenico Ronga ◽  
Elisa Biazzi ◽  
Katia Parati ◽  
Domenico Carminati ◽  
Elio Carminati ◽  
...  

Microalgae are attracting the interest of agrochemical industries and farmers, due to their biostimulant and biofertiliser properties. Microalgal biostimulants (MBS) and biofertilisers (MBF) might be used in crop production to increase agricultural sustainability. Biostimulants are products derived from organic material that, applied in small quantities, are able to stimulate the growth and development of several crops under both optimal and stressful conditions. Biofertilisers are products containing living microorganisms or natural substances that are able to improve chemical and biological soil properties, stimulating plant growth, and restoring soil fertility. This review is aimed at reporting developments in the processing of MBS and MBF, summarising the biologically-active compounds, and examining the researches supporting the use of MBS and MBF for managing productivity and abiotic stresses in crop productions. Microalgae are used in agriculture in different applications, such as amendment, foliar application, and seed priming. MBS and MBF might be applied as an alternative technique, or used in conjunction with synthetic fertilisers, crop protection products and plant growth regulators, generating multiple benefits, such as enhanced rooting, higher crop yields and quality and tolerance to drought and salt. Worldwide, MBS and MBF remain largely unexploited, such that this study highlights some of the current researches and future development priorities.


2015 ◽  
Vol 7 (2) ◽  
pp. 1070-1080 ◽  
Author(s):  
Mamta Kajla ◽  
Vinaya Kumar Yadav ◽  
Jaswant Khokhar ◽  
Samar Singh ◽  
R. S. Chhokar ◽  
...  

About 9% of area on earth is under crops out of which 91% is under various stresses. On an average, about 50% yield losses are due to abiotic stresses mostly due to high temperature (20%), low temperature (7%), salinity (10%), drought (9%) and other abiotic stresses (4%). As there is no scope for increasing area under agriculture, the increased productivity from these stressed land is a must to meet the ever increasing demand. Further, the severity of abiotic stresses is likely to increase due to changing climate leading to adverse effect on crops. Therefore, abiotic stresses like drought, salinity, sodicity, acidity, water logging, heat, nutrient toxicities/ deficiencies etc need to be effectively addressed through adoption of management practices like tillage and planting options, residue management, sowing time, stress tolerant cultivars, irrigation scheduling and integrated nutrient management to conserve natural resources, mitigating their adverse effect and sustainable wheat production.


2013 ◽  
Vol 27 (4) ◽  
pp. 463-477 ◽  
Author(s):  
J. Lipiec ◽  
C. Doussan ◽  
A. Nosalewicz ◽  
K. Kondracka

Abstract Drought and heat stresses are important threat limitations to plant growth and sustainable agriculture worldwide. Our objective is to provide a review of plant responses and adaptations to drought and elevated temperature including roots, shoots, and final yield and management approaches for alleviating adverse effects of the stresses based mostly on recent literature. The sections of the paper deal with plant responses including root growth, transpiration, photosynthesis, water use efficiency, phenotypic flexibility, accumulation of compounds of low molecular mass (eg proline and gibberellins), and expression of some genes and proteins for increasing the tolerance to the abiotic stresses. Soil and crop management practices to alleviate negative effects of drought and heat stresses are also discussed. Investigations involving determination of plant assimilate partitioning, phenotypic plasticity, and identification of most stress-tolerant plant genotypes are essential for understanding the complexity of the responses and for future plant breeding. The adverse effects of drought and heat stress can be mitigated by soil management practices, crop establishment, and foliar application of growth regulators by maintaining an appropriate level of water in the leaves due to osmotic adjustment and stomatal performance.


Author(s):  
Ainhoa Magrach ◽  
Angel Gimenez ◽  
Alfonso Allen-Perkins ◽  
Lucas Garibaldi ◽  
Ignasi Bartomeus

Working landscapes represent >60% of terrestrial landscapes and thus represent opportunities for biodiversity conservation outside of traditional protected areas. For long, biodiversity conservation and crop productivity have been seen as mutually exclusive options. Here, we use a unique dataset that includes annual monitoring of 12,300 permanent 25 ha-plots over two decades across Spain to assess how working landscapes are changing over time and how these changes affect their ability to ensure high yields. We find that win-win strategies that are good for biodiversity conservation can also lead to increasing crop yields. Specifically, we find that management practices that favor increasing biodiversity values such as maintaining small field sizes and high crop richness values at the landscape scale actually lead to the greatest yield values across 54 crops considered. Win-win scenarios for biodiversity conservation and crop productivity are thus possible, yet not as widespread as they could be.


2020 ◽  
pp. 75-111
Author(s):  
Ayman EL Sabagh ◽  
Akbar Hossain ◽  
M Sohidul Islam ◽  
Shah Fahad ◽  
Disna Ratnasekera ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1910
Author(s):  
Masum Billah ◽  
Shirin Aktar ◽  
Marian Brestic ◽  
Marek Zivcak ◽  
Abul Bashar Mohammad Khaldun ◽  
...  

Drought and salinity are the major environmental abiotic stresses that negatively impact crop development and yield. To improve yields under abiotic stress conditions, drought- and salinity-tolerant crops are key to support world crop production and mitigate the demand of the growing world population. Nevertheless, plant responses to abiotic stresses are highly complex and controlled by networks of genetic and ecological factors that are the main targets of crop breeding programs. Several genomics strategies are employed to improve crop productivity under abiotic stress conditions, but traditional techniques are not sufficient to prevent stress-related losses in productivity. Within the last decade, modern genomics studies have advanced our capabilities of improving crop genetics, especially those traits relevant to abiotic stress management. This review provided updated and comprehensive knowledge concerning all possible combinations of advanced genomics tools and the gene regulatory network of reactive oxygen species homeostasis for the appropriate planning of future breeding programs, which will assist sustainable crop production under salinity and drought conditions.


2020 ◽  
Vol 11 (2) ◽  
pp. 96-104 ◽  
Author(s):  
Shahid Ali ◽  
Linan Xie

Abiotic stresses affect the plant growth in different ways and at different developmental stages that reduce the crop yields. The increasing world population continually demands more crop yields; therefore it is important to use low-cost technologies against abiotic stresses to increase crop productivity. Soil microorganisms survive in the soil associated with plants in extreme condition. It was demonstrated that these beneficial microorganisms promote plant growth and development under various stresses. The soil microbes interact with the plant through rhizospheric or endophytic association and promote the plant growth through different processes such as nutrients mobilization, disease suppression, and hormone secretions. The microorganisms colonized in the rhizospheric region and imparted the abiotic stress tolerance by producing 1-aminocyclopropane-1- carboxylate (ACC) deaminase, antioxidant, and volatile compounds, inducing the accumulation of osmolytes, production of exopolysaccharide, upregulation or downregulation of stress genes, phytohormones and change the root morphology. A large number of these rhizosphere microorganisms are now patented. In the present review, an attempt was made to throw light on the mechanism of micro-organism that operates during abiotic stresses and promotes plant survival and productivity.


2019 ◽  
Vol 3 (3) ◽  
pp. 61-79
Author(s):  
S.N. Singh

This paper summarizes the arguments and counterarguments within the scientific discussion on the issue of climate change and its affect on agricultural productivity in Ethiopia. The main purpose of the research is to analyze the impact of climate change on the productivity of agricultural crops. Systematization literary sources and approaches for solving the problem associate were analyzed that indicates there is a significant adverse effect of climate change on agricultural productivity as well as allied fields. The relevance of the decision of this scientific problem is that the community participation and state interventions are required at grass-roots level. Investigation of the topic of climate change and agriculture in Ethiopia in the paper is carried out broadly in the following logical sequence at an appropriate empirical standard level. Methodological tools of the research methods were descriptive statistics and the year of research was 2018-19. The object of research is the chosen for Ethiopia as a whole and case study was carried out in Mettu Woreda to verify the significance. The paper presents the results of an empirical analysis of quantitative data, which showed that there is an adverse effect of climate change on agricultural productivity in the region. The climate change affects agricultural productivity and production through shortening of maturity period and to decreasing crop yields, changing livestock feed availability, affecting animal health growth and reproduction depressing the quality and quantity of the crops, changing distribution rate, contracting pastoral zones, expansion of tropical dry forests and expansion of desertification etc.The research empirically confirms and theoretically proves that highlights the coordination between state and local communities are required to combat the adverse effect of climate change. The results of the research can be useful for policy maker, researchers, academicians and other international organizations like UNEP and UNDP etc. Keywords: climate change, random sampling, descriptive statistics, crop productivity, food security and livestock.


Sign in / Sign up

Export Citation Format

Share Document