scholarly journals Comprehensive analysis of the NAC gene family in Elaeis guineensis

Plant Omics ◽  
2018 ◽  
pp. 120-127 ◽  
Author(s):  
Yong Xiao ◽  
Haikuo Fan ◽  
Jianwei Ma ◽  
Xintao Lei ◽  
Yong Wang ◽  
...  

The NAC gene family encode transcriptional regulator that contain a conserved NAM domain near the N-terminus and participate in the regulation of plant development and response to different abiotic stresses. In this study, 129 EgNAC genes were identified from the genome sequence of Elaeis guineensis and 97 EgNAC located on the chromsomes with an average of 4.56 EgNAC genes per chromosome. About 60% of EgNACs contained three exons and the gene sizes varied from 541 bp to 37,294 bp. Genomic duplication analysis showed that 10 EgNAC genes were involved in segmental duplication events and two genes were from tandem duplication. The gene expression profiles of EgNACs based on transcriptome database for different oil palm tissues showed that 30 EgNACs with low or no expression and 24 EgNACs were specifically expressed in one tissue. The trancriptome comparison between the control and cold stress samples demonstrated that thirty-seven EgNACs were down-regulated and 82 EgNACs were up-regulated under cold stress. Further RT-qPCR showed that the expression for 24 out of 32 validated EgNACs were induced under both cold, drought and salt stresses. Our comprehensive analysis of EgNAC genes has provided clues for candidate genes involved in abiotic stress tolerance.

Oncogene ◽  
2002 ◽  
Vol 21 (42) ◽  
pp. 6549-6556 ◽  
Author(s):  
Jiafu Ji ◽  
Xin Chen ◽  
Suet Yi Leung ◽  
Jen-Tsan A Chi ◽  
Kent Man Chu ◽  
...  

Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 494 ◽  
Author(s):  
Xiaokang Zhuo ◽  
Tangchun Zheng ◽  
Zhiyong Zhang ◽  
Yichi Zhang ◽  
Liangbao Jiang ◽  
...  

NAC transcription factors (TFs) participate in multiple biological processes, including biotic and abiotic stress responses, signal transduction and development. Cold stress can adversely impact plant growth and development, thereby limiting agricultural productivity. Prunus mume, an excellent horticultural crop, is widely cultivated in Asian countries. Its flower can tolerate freezing-stress in the early spring. To investigate the putative NAC genes responsible for cold-stress, we identified and analyzed 113 high-confidence PmNAC genes and characterized them by bioinformatics tools and expression profiles. These PmNACs were clustered into 14 sub-families and distributed on eight chromosomes and scaffolds, with the highest number located on chromosome 3. Duplicated events resulted in a large gene family; 15 and 8 pairs of PmNACs were the result of tandem and segmental duplicates, respectively. Moreover, three membrane-bound proteins (PmNAC59/66/73) and three miRNA-targeted genes (PmNAC40/41/83) were identified. Most PmNAC genes presented tissue-specific and time-specific expression patterns. Sixteen PmNACs (PmNAC11/19/20/23/41/48/58/74/75/76/78/79/85/86/103/111) exhibited down-regulation during flower bud opening and are, therefore, putative candidates for dormancy and cold-tolerance. Seventeen genes (PmNAC11/12/17/21/29/42/30/48/59/66/73/75/85/86/93/99/111) were highly expressed in stem during winter and are putative candidates for freezing resistance. The cold-stress response pattern of 15 putative PmNACs was observed under 4 °C at different treatment times. The expression of 10 genes (PmNAC11/20/23/40/42/48/57/60/66/86) was upregulated, while 5 genes (PmNAC59/61/82/85/107) were significantly inhibited. The putative candidates, thus identified, have the potential for breeding the cold-tolerant horticultural plants. This study increases our understanding of functions of the NAC gene family in cold tolerance, thereby potentially intensifying the molecular breeding programs of woody plants.


2010 ◽  
Vol 460 (6) ◽  
pp. 925-952 ◽  
Author(s):  
Sylvain Pradervand ◽  
Annie Zuber Mercier ◽  
Gabriel Centeno ◽  
Olivier Bonny ◽  
Dmitri Firsov

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 670 ◽  
Author(s):  
Dong ◽  
Jiang ◽  
Yang ◽  
Xiao ◽  
Bai ◽  
...  

The NAC gene family is one of the largest families of transcriptional regulators in plants, and it plays important roles in the regulation of growth and development as well as in stress responses. Genome-wide analyses have been performed in diverse plant species, but there is still no systematic analysis of the NAC genes of Coffea canephora Pierre ex A. Froehner. In this study, we identified 63 NAC genes from the genome of C. canephora. The basic features and comparison analysis indicated that the NAC gene members increased via duplication events during the evolution of the plant. Phylogenetic analysis divided the NAC proteins from C. canephora, Arabidopsis and rice into 16 subgroups. Analysis of the expression patterns of CocNACs under cold stress and coffee bean development indicated that 38 CocNACs were differentially expressed under cold stress; six genes may play important roles in the process of cold acclimation, and four genes among 54 CocNACs showing a variety of expression patterns during different developmental stages of coffee beans may be positively related to the bean development. This study can expand our understanding of the functions of the CocNAC gene family in cold responses and bean development, thereby potentially intensifying the molecular breeding programs of Coffea spp. plants.


Sign in / Sign up

Export Citation Format

Share Document