scholarly journals Sensor Applications in Analysis of Drugs and Formulations

Author(s):  
Rajan Thakur ◽  
Anjana Devi

Biosensors are currently widely used in biomedical diagnostics, as well as point-of-care assessment of therapy and disease advancement, environmental sensing, food safety, drug development, forensics, and biomedical research. Biosensors may be developed using several different approaches. Due to the growing requirement for efficient and low-cost analytical methods, biosensors have gained increasing attention for application in the quality analysis of pharmaceuticals and other pharmaceutically relevant analytes. Biosensors enable the analysis of active ingredients in pharmaceutical formulations as well as the determination of degraded products and intermediates in biological matrices. The current study discusses several types of biosensors and their applications in drug analysis and formulations.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 189
Author(s):  
Susana Campuzano ◽  
Paloma Yáñez-Sedeño ◽  
José Manuel Pingarrón

The multifaceted key roles of cytokines in immunity and inflammatory processes have led to a high clinical interest for the determination of these biomolecules to be used as a tool in the diagnosis, prognosis, monitoring and treatment of several diseases of great current relevance (autoimmune, neurodegenerative, cardiac, viral and cancer diseases, hypercholesterolemia and diabetes). Therefore, the rapid and accurate determination of cytokine biomarkers in body fluids, cells and tissues has attracted considerable attention. However, many currently available techniques used for this purpose, although sensitive and selective, require expensive equipment and advanced human skills and do not meet the demands of today’s clinic in terms of test time, simplicity and point-of-care applicability. In the course of ongoing pursuit of new analytical methodologies, electrochemical biosensing is steadily gaining ground as a strategy suitable to develop simple, low-cost methods, with the ability for multiplexed and multiomics determinations in a short time and requiring a small amount of sample. This review article puts forward electrochemical biosensing methods reported in the last five years for the determination of cytokines, summarizes recent developments and trends through a comprehensive discussion of selected strategies, and highlights the challenges to solve in this field. Considering the key role demonstrated in the last years by different materials (with nano or micrometric size and with or without magnetic properties), in the design of analytical performance-enhanced electrochemical biosensing strategies, special attention is paid to the methods exploiting these approaches.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Mayra K. S. Monteiro ◽  
Djalma R. Da Silva ◽  
Marco A. Quiroz ◽  
Vítor J. P. Vilar ◽  
Carlos A. Martínez-Huitle ◽  
...  

This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5–1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.


RSC Advances ◽  
2016 ◽  
Vol 6 (62) ◽  
pp. 57580-57602 ◽  
Author(s):  
Neeta Thapliyal ◽  
Tirivashe E. Chiwunze ◽  
Rajshekhar Karpoormath ◽  
Rajendra N. Goyal ◽  
Harun Patel ◽  
...  

The review focusses on the role of electroanalytical methods for determination of antimalarial drugs in biological matrices and pharmaceutical formulations with a critical analysis of published voltammetric and potentiometric methods.


2021 ◽  
Vol 71 (4) ◽  
pp. 619-630
Author(s):  
Lea Kukoc-Modun ◽  
Maja Biocic ◽  
Njegomir Radić

Abstract A novel and simple method for the determination of penicillamine (PEN), tiopronin (mercaptopropionyl glycine, MPG) and glutathione (GSH) in pharmaceutical formulations by kinetic spectrophotometry has been developed and validated. It is based on the redox reaction where the thiol compound (RSH) reduces CuII-neocuproine complex to CuI-neocuproine complex. The non-steady state signal of the formed CuI- neocuproine complex is measured at 458 nm. The initial rate and fixed time (at 1 min) methods were validated. The calibration graph was linear in the concentration range from 8.0 × 10‒7 to 8.0 × 10‒5 mol L−1 for the initial rate method and from 6.0 × 10‒7 to 6.0 × 10−5 mol L−1 for the fixed time method, with the detection limits of 2.4 × 10−7 and 1.4 × 10‒7 mol L−1, resp. Levels of PEN, MPG and GSH in pharmaceutical formulations were successfully assayed by both methods. The advantages of the presented methods include sensitivity, short analysis time, ease of application and low cost.


2019 ◽  
Vol 15 (4) ◽  
pp. 467-484 ◽  
Author(s):  
Elif Burcu Aydin ◽  
Muhammet Aydin ◽  
Mustafa Kemal Sezginturk

Background: The determination of drugs in pharmaceutical formulations and human biologic fluids is important for pharmaceutical and medical sciences. Successful analysis requires low sensitivity, high selectivity and minimum interference effects. Current analytical methods can detect drugs at very low levels but these methods require long sample preparation steps, extraction prior to analysis, highly trained technical staff and high-cost instruments. Biosensors offer several advantages such as short analysis time, high sensitivity, real-time analysis, low-cost instruments, and short pretreatment steps over traditional techniques. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the degradation products and metabolites in biological fluids. The present review gives comprehensive information on the application of biosensors for drug discovery and analysis. Moreover, this review focuses on the fabrication of these biosensors. Methods: Biosensors can be classified as the utilized bioreceptor and the signal transduction mechanism. The classification based on signal transductions includes electrochemical optical, thermal or acoustic. Electrochemical and optic transducers are mostly utilized transducers used for drug analysis. There are many biological recognition elements, such as enzymes, antibodies, cells that have been used in fabricating of biosensors. Aptamers and antibodies are the most widely used recognition elements for the screening of the drugs. Electrochemical sensors and biosensors have several advantages such as low detection limits, a wide linear response range, good stability and reproducibility. Optical biosensors have several advantages such as direct, real-time and label-free detection of many biological and chemical substances, high specificity, sensitivity, small size and low cost. Modified electrodes enhance sensitivity of the electrodes to develop a new biosensor with desired features. Chemically modified electrodes have gained attention in drug analysis owing to low background current, wide potential window range, simple surface renewal, low detection limit and low cost. Modified electrodes produced by modifying of a solid surface electrode via different materials (carbonaceous materials, metal nanoparticles, polymer, biomolecules) immobilization. Recent advances in nanotechnology offer opportunities to design and construct biosensors. Unique features of nanomaterials provide many advantages in the fabrication of biosensors. Nanomaterials have controllable chemical structures, large surface to volume ratios, functional groups on their surface. To develop proteininorganic hybrid nanomaterials, four preparation methods have been used. These methods are immobilization, conjugation, crosslinking and self-assembly. In the present manuscript, applications of different biosensors, fabricated by using several materials, for drug analysis are reviewed. The biosensing strategies are investigated and discussed in detail. Results: Several analytical techniques such as chromatography, spectroscopy, radiometry, immunoassays and electrochemistry have been used for drug analysis and quantification. Methods based on chromatography require timeconsuming procedure, long sample-preparation steps, expensive instruments and trained staff. Compared to chromatographic methods, immunoassays have simple protocols and lower cost. Electrochemical measurements have many advantages over traditional chemical analyses and give information about drug quantity, metabolic fate of drugs, and pharmacological activity. Moreover, the electroanalytical methods are useful to determine drugs sensitively and selectivity. Additionally, these methods decrease analysis cost and require low-cost instruments and simple sample pretreatment steps. Conclusion: In recent years, drug analyses are performed using traditional techniques. These techniques have a good detection limit, but they have some limitations such as long analysis time, expensive device and experienced personnel requirement. Increased demand for practical and low-cost analytical techniques biosensor has gained interest for drug determinations in medical sciences. Biosensors are unique and successful devices when compared to traditional techniques. For drug determination, different electrode modification materials and different biorecognition elements are used for biosensor construction. Several biosensor construction strategies have been developed to enhance the biosensor performance. With the considerable progress in electrode surface modification, promotes the selectivity of the biosensor, decreases the production cost and provides miniaturization. In the next years, advances in technology will provide low cost, sensitive, selective biosensors for drug analysis in drug formulations and biological samples.


2019 ◽  
Vol 4 (1) ◽  
pp. 23-27
Author(s):  
K. Kiran Kumar ◽  
R. Venkata Nadh ◽  
M. Siva Kishore ◽  
G. Giri Prasad

A simple, selective, accurate and low-cost spectrophotometric method has been described for determination of satranidazole in bulk and pharmaceutical formulations. The developed method involves the formation of chloroform extractable colored ion-association complex of satranidazole with Tropaeolin OOO (TPooo). The extracted colored complex showed absorbance maximum at wavelength 484 nm and obeying Beer′s law in the concentration 4-20 μg mL-1 with the correlation coeffiecent of 0.9998. The results of statistical analysis of the proposed method reveals high accuracy and good precession. Thus, the proposed method can be used commercially for the determination of satranidazole in bulk and pharmaceutical formulations.


2019 ◽  
Vol 25 (4) ◽  
pp. 278-286
Author(s):  
Anita Sarkany ◽  
Gabriel Hancu ◽  
Claudiu Drăguț ◽  
Adriana Modroiu ◽  
Enikő Barabás-Hajdu

Tramadol is a widely used opioid analgesic frequently prescribed for treatment of moderate to severe, acute and chronic pain. It has a complex mechanism of action, acting both as a central opiate agonist and as a norepinephrine and serotonin reuptake inhibitor. It is a chiral substance, having two chiral centers in its structure and it is used in therapy as a racemic mixture of two of its enantiomers, (S,S)-tramadol and (R,R)-tramadol. In the last 25 years, several analytical procedures have been published in the literature for the achiral and chiral determination of tramadol from pharmaceutical formulations and biological matrices. Among these methods, capillary electrophoresis techniques have proved to be an efficient, reliable and cost-effective solution. The purpose of the present review is to provide a systematic survey to present and discuss the electrodriven methods available in the literature for the achiral and chiral analysis of tramadol.


2010 ◽  
Vol 46 (3) ◽  
pp. 375-391 ◽  
Author(s):  
Eric de Souza Gil ◽  
Giselle Rodrigues de Melo

Given the increasing demand for practical and low-cost analytical techniques, biosensors have attracted attention for use in the quality analysis of drugs, medicines, and other analytes of interest in the pharmaceutical area. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the analysis of degradation products and metabolites in biological fluids. Thus, this article presents a brief review of biosensor use in pharmaceutical analysis, focusing on enzymatic electrochemical sensors.


2003 ◽  
Vol 28 (1) ◽  
pp. 39-44 ◽  
Author(s):  
P. R. da S. Ribeiro ◽  
A. O. Santini ◽  
H. R. Pezza ◽  
L. Pezza

A simple, precise, rapid and low-cost potentiometric method for captopril determination in pure form and in pharmaceutical preparations is proposed. Captopril present in tablets containing known quantity of drug was potentiometrically titrated in aqueous solution with NaOH using a glass pH electrode, coupled to an autotitrator. No interferences were observed in the presence of common components of the tablets as lactose, microcrystalline cellulose, croscarmellose sodium, starch and magnesium stearate. The analytical results obtained by applying the proposed method compared very favorably with those obtained by the United States Pharmacopoeia Standard procedure. Recovery of captopril from various tablet dosage formulations range from 98.0 to 102.0%.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 869 ◽  
Author(s):  
Raquel Pruna ◽  
Francisco Palacio ◽  
Isabel Fuentes ◽  
Clara Viñas ◽  
Francesc Teixidor ◽  
...  

A novel transparent and nanostructured ion-sensitive electrode based on indium tin oxide (ITO) coated with cobaltbis(dicarbollide)-doped poly(pyrrole) (PPy) is presented in this work. This metallacarborane-doped PPy was used as conducting polymer due to its high stability and chemical resistance. The ion-sensitive electrode was coupled to a miniaturized and low-cost potentiostat, in a final autonomous kit for potentiometric determination of pH. Qualitative calibration of the system revealed Nernstian behavior, resulting promising for novel point-of-care biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document