Wind-induced Precipitation Undercatch of the Hellmann Gauges

1999 ◽  
Vol 30 (1) ◽  
pp. 57-80 ◽  
Author(s):  
Daqing Yang ◽  
Esko Elomaa ◽  
Asko Tuominen ◽  
Ari Aaltonen ◽  
Barry Goodison ◽  
...  

The Hellmann gauges have been widely used as the official precipitation measurement instruments in 30 countries. From 1986 to 1993, the accuracy and performance of the Hellmann gauges were evaluated during the WMO Solid Precipitation Measurement Intercomparison at 4 stations in Finland, Russia, Germany, and Croatia. The double fence intercomparison reference (DFIR) was the reference standard used at all the Intercomparison stations. The data for the Hellmann gauges were compiled from measurements made at the 4 WMO intercomparison sites. These data represent a variety of climates, terrains and exposures. The effects of meteorological factors, such as wind speed, type of precipitation and temperature, on gauge catch efficiency were investigated. For snow and mixed precipitation, wind speed was found to be the most important factor determining the gauge catch and air temperature had a secondary effect. The relations of gauge catch ratio versus wind speed and temperature on a daily time scale were derived and presented for snow and mixed precipitation. Independent tests of the relations have been conducted at the WMO intercomparison stations and reasonable agreement between the corrected precipitation and the DFIR observation has been obtained. These relations are therefore recommended to be used for test correction of gauge measured data. It is expected that implementation of these correction procedures to the current and archived records will significantly improve the accuracy and homogeneity of precipitation data.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 2023
Author(s):  
Ruixin Li ◽  
Yiwan Zhao ◽  
Gaochong Lv ◽  
Weilin Li ◽  
Jiayin Zhu ◽  
...  

Near-wall microenvironment of a building refers to parameters such as wind speed, temperature, relative humidity, solar radiation near the building’s façade, etc. The distribution of these parameters on the building façade shows a certain variation based on changes in height. As a technology of passive heating and ventilation, the effectiveness of this application on heat collection wall is significantly affected by the near-wall microclimate, which is manifested by the differences, and rules of the thermal process of the components present at different elevations. To explore the feasibility and specificity of this application of heat collection wall in high-rise buildings, this study uses three typical high-rise buildings from Zhengzhou, China, as research buildings. Periodic measurements of the near-wall microclimate during winter and summer were carried out, and the changing rules of vertical and horizontal microclimate were discussed in detail. Later, by combining these measured data with numerical method, thermal process and performance of heat collection wall based on increasing altitude were quantitatively analyzed through numerical calculations, and the optimum scheme for heat collection wall components was summarized to provide a theoretical basis for the structural design of heat-collecting wall in high-rise buildings.


2017 ◽  
Author(s):  
John Kochendorfer ◽  
Rodica Nitu ◽  
Mareile Wolff ◽  
Eva Mekis ◽  
Roy Rasmussen ◽  
...  

Abstract. Although precipitation has been measured for many centuries, precipitation measurements are still beset with significant inaccuracies. Solid precipitation is particularly difficult to measure accurately, and differences between winter-time precipitation measurements from different measurement networks or different regions can exceed 100 %. Using precipitation gauge results from the World Meteorological Organization Solid Precipitation Intercomparison Experiment (WMO-SPICE), errors in precipitation measurement caused by gauge uncertainty, spatial variability in precipitation, hydrometeor type, crystal habit, and wind were quantified. The methods used to calculate gauge catch efficiency and correct known biases are described. Adjustments, in the form of transfer functions that describe catch efficiency as a function of air temperature and wind speed, were derived using measurements from eight separate WMO-SPICE sites for both unshielded and single-Alter shielded weighing precipitation gauges. The use of multiple sites to derive such adjustments makes these results unique and more broadly applicable to other sites with various climatic conditions. In addition, errors associated with the use of a single transfer function to correct gauge undercatch at multiple sites were estimated.


Author(s):  
Julie M. Thériault ◽  
Nicolas R. Leroux ◽  
Roy Rasmussen

AbstractAccurate snowfall measurement is challenging because it depends on the precipitation gauge used, meteorological conditions, and the precipitation microphysics. Upstream of weighing gauges, the flow field is disturbed by the gauge and any shielding used usually creates an updraft, which deflects solid precipitation from falling in the gauge resulting in significant undercatch. Wind shields are often used with weighing gauges to reduce this updraft and transfer functions are required to adjust the snowfall measurements to consider gauge undercatch. Using these functions reduce the bias in precipitation measurement but not the Root Mean Square Error (RMSE) (Kochendorfer et al. 2017a, b). The analysis performed in this study shows that the hotplate precipitation gauge bias after wind correction is near zero and similar to wind corrected weighing gauges but improves on the RMSE or scatter of the collection efficiency of weighing gauges for a given wind speed. To do this, the accuracy of the hotplate was compared to standard unshielded and shielded weighing gauges collected during the WMO SPICE program. The RMSE of the hotplate measurements is lower than weighing gauges (with or without an Alter shield) for wind speeds up to 5 m s-1; the wind speed limit at which sufficient data were available. This study shows that the hotplate precipitation measurement has a low bias and RMSE due to its aerodynamic shape, making its performance mostly independent of the type of solid precipitation.


2010 ◽  
Vol 61 (4) ◽  
pp. 937-944 ◽  
Author(s):  
F. Badrot-Nico ◽  
V. Guinot ◽  
F. Brissaud

Up to now, most investigations on the dependency of the fluid flow patterns and performance of waste stabilisation ponds (WSPs) on wind speed and direction and pond layout have been performed using 2D and 3D CFD steady state isothermal models. 3D non steady state models integrating thermal processes and boundary conditions taking into account the full influence of meteorological factors are likely to provide more realistic predictions of WSP performance. Such modelling was undertaken for 4 pond layouts, 2 without baffles and 2 with baffles. Wind speed and direction were kept constant throughout each simulation while other meteorological forcings were derived from field measurements. Twelve wind directions and 2, 4 and 6 m s−1 wind speeds were considered for each WSP layout. Simulations allowed verifying that the pond performance is dependent on the wind direction and velocity, that baffles may improve WSP performance and that the addition of well-designed baffles has the advantage of reducing its sensitivity to the wind.


Author(s):  
Fenglei Du ◽  
Greg Bridges ◽  
D.J. Thomson ◽  
Rama R. Goruganthu ◽  
Shawn McBride ◽  
...  

Abstract With the ever-increasing density and performance of integrated circuits, non-invasive, accurate, and high spatial and temporal resolution electric signal measurement instruments hold the key to performing successful diagnostics and failure analysis. Sampled electrostatic force microscopy (EFM) has the potential for such applications. It provides a noninvasive approach to measuring high frequency internal integrated circuit signals. Previous EFMs operate using a repetitive single-pulse sampling approach and are inherently subject to the signal-to-noise ratio (SNR) problems when test pattern duty cycle times become large. In this paper we present an innovative technique that uses groups of pulses to improve the SNR of sampled EFM systems. The approach can easily provide more than an order-ofmagnitude improvement to the SNR. The details of the approach are presented.


2021 ◽  
Vol 13 (14) ◽  
pp. 7773
Author(s):  
San Wang ◽  
Hongli Li ◽  
Shukui Niu

The Sichuan province is a key area for forest and grassland fire prevention in China. Forest resources contribute significantly not only to the biological gene pool in the mid latitudes but also in reducing the concentration of greenhouse gases and slowing down global warming. To study and forecast forest fire change trends in a grade I forest fire danger zone in the Sichuan province under climate change, the dynamic impacts of meteorological factors on forest fires in different climatic regions were explored and a model between them was established by using an integral regression in this study. The results showed that the dominant factor behind the area burned was wind speed in three climatic regions, particularly in Ganzi and A’ba with plateau climates. In Ganzi and A’ba, precipitation was mainly responsible for controlling the number of forest fires while it was mainly affected by temperature in Panzhihua and Liangshan with semi-humid subtropical mountain climates. Moreover, the synergistic effect of temperature, precipitation and wind speed was responsible in basin mid-subtropical humid climates with Chengdu as the center and the influence of temperature was slightly higher. The differential forest fire response to meteorological factors was observed in different climatic regions but there was some regularity. The influence of monthly precipitation in the autumn on the area burned in each climatic region was more significant than in other seasons, which verified the hypothesis of a precipitation lag effect. Climate warming and the combined impact of warming effects may lead to more frequent and severe fires.


Author(s):  
Yusuf Alper Kaplan

In this study, the compatibility of the real wind energy potential to the estimated wind energy potential by Weibull Distribution Function (WDF) of a region with low average wind speed potential was examined. The main purpose of this study is to examine the performance of six different methods used to find the coefficients of the WDF and to determine the best performing method for selected region. In this study seven-year hourly wind speed data obtained from the general directorate of meteorology of this region was used. The root mean square error (RMSE) statistical indicator was used to compare the efficiency of all used methods. Another main purpose of this study is to observe the how the performance of the used methods changes over the years. The obtained results showed that the performances of the used methods showed slight changes over the years, but when evaluated in general, it was observed that all method showed acceptable performance. Based on the obtained results, when the seven-year data is evaluated in this selected region, it can be said that the MM method shows the best performance.


2021 ◽  
pp. 103-110
Author(s):  
E. A. Stulov ◽  
◽  
E. V. Sosnikova ◽  
N. A. Monakhova ◽  
◽  
...  

Based on the daily measurements of atmospheric aerosol characteristics in the city of Dolgoprudny (20 km from the center of Moscow) carried out during 2013-2018, the influence of some meteorological factors on the concentration of various aerosol fractions in the surface layer of the atmosphere is analyzed. It is that the aerosol concentration depends most on the wind speed and the vertical temperature gradient. The method of simple estimation of aerosol particles accumulation conditions in the surface layer based on the use of standard radiosonde data is developed.


2020 ◽  
Author(s):  
Wenfang Guo ◽  
Letai Yi ◽  
Peng Wang ◽  
Baojun Wang ◽  
Minhui Li

Abstract Background Some previous studies have examined the effects of temperature, humidity, wind speed and atmospheric pressure on children morbidity, but few studies have evaluated health effects of combined effect of various meteorological factors. The purpose of this study was to assess the effect of daily changes in meteorological factors and their comprehensive effects on children’s respiratory disease hospitalizations for different ages, genders and subtypes in Baotou, China. Methods Generalized additive models and distributed lag non-linear models were constructed to simultaneously assess the exposure–response associations between daily admission counts of children with respiratory diseases and daily net effective temperature and other meteorological factors as well as their lag dependencies. Results In general, the cumulative meteorological factors had greater effects on lower respiratory tract infections than upper respiratory tract infections (RR: temperature [4.2 vs. 2.7]; wind speed [3.1 vs. 2.5]; humidity [1.8 vs. 1.3]). The effects on children over 3 years old were greater than those on children aged 0–3 years (OR: temperature [4.4 vs. 1.3]; wind speed [4.4 vs. 1.5]), while the effects on female children were greater than those on male children (OR: temperature [2.6 vs. 1.8]; wind speed [3.3 vs. 1.6]). However, some differences were observed between groups with regard to the effect of humidity. Hence, the net effective temperature was calculated using comprehensive meteorological factors, and the influence range value and peak value of each group were determined. Conclusions The influence of meteorological factors on children’s respiratory disease hospitalizations shows different characteristics in different subgroups. Hence, the net effective temperature was calculated using the comprehensive meteorological factors, and the influence range and peak value of each group were determined so as to recommend the corresponding measures accordingly.


Sign in / Sign up

Export Citation Format

Share Document