Identification of urine scale problems in urinals and the solution using rainwater

2015 ◽  
Vol 5 (2) ◽  
pp. 322-329 ◽  
Author(s):  
Shervin Hashemi ◽  
Mooyoung Han ◽  
Tschungil Kim

Water-saving urinals, such as waterless and low-flush urinals, have a great potential for water conservation by using 0 ∼ 0.8 l/flush compared with ordinary urinals, which use 2 ∼ 4 l/flush. However in some cases, water-saving urinals are not desirable because of technical problems, such as urine scale formation which makes the urinal dirty and blocks pipes. Also, some cultures do not allow the use of waterless urinals because of their notion of cleanliness. In this paper, factors causing urine scale formation have been identified from laboratory tests on pure urine and several types of flushing water. Some meaningful solutions for managing and solving urine scale problems have been suggested. In particular, the results show that mixing urine with seawater or high salinity groundwater will increase the potential of urine scale formation by increasing total dissolved solids (TDS) and pH. However, using rainwater for urinal flushing can significantly reduce the TDS and pH. These findings could support the use of water-saving toilets in Islamic societies by ensuring that the cleanliness of urinals can still be achieved.

1993 ◽  
Vol 44 (2) ◽  
pp. 335 ◽  
Author(s):  
L Metzeling

The likely effect of salinization on stream invertebrates was studied by comparing macroinvertebrate community structure at nine sites in six lowland, perennially flowing streams. The salinity of these streams ranged from 51 to 1100 mg L-1 total dissolved solids (TDS) (and were historically higher, up to about 2000 mg L-1 TDS). There was no correlation between either number of taxa or faunal abundance with salinity. However, multivariate analyses showed distinct invertebrate communities associated with different salinities. Fidelity analysis identified groups of taxa associated with either low or high salinity. Existing information on the distribution of the common taxa within these groups indicated that they were tolerant of wider ranges in salinity than those found in this study. The rare taxa most clearly distinguished between sites of different salinities and are possibly more sensitive to changes in salinity.


Author(s):  
Frederick Pontius

As freshwater sources of drinking water become limited cities and urban areas must consider higher-salinity waters as potential sources of drinking water. The Salton Sea in the Imperial Valley of California has a very high salinity (43 ppt), total dissolved solids (70,000 mg/L) and color (1440 CU). Proposals to desalinate the Salton Sea are expected to lower the equilibrium salinity from 45 ppt to 3 ppt yielding significant benefits for ecological restoration. High salinity eutrophic waters such as the Salton Sea are difficult to treat yet more desirable sources of drinking water are not always available. Jar tests were performed to evaluate the treatability of Salton Sea water for potential urban water use by coagulation using aluminum chlorohydrate, ferric chloride and alum. Coagulation-sedimentation proved to be relatively ineffective for lowering turbidity with no clear optimum dose for any of the coagulants tested. Alum was most effective for color removal (28 percent) at a dose of 40 mg/L. Turbidity was removed effectively with 0.45 m and 0.1 m microfiltration. Bench tests of Salton Sea water using Sea Water Reverse Osmosis (SWRO) achieved rejections of 99 percent salinity, 97.7 percent conductivity, 98.6 percent total dissolved solids, 98.7 percent chloride, 65 percent sulfate, and 99.3 percent turbidity.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
AJAY KUMAR RAJAWAT ◽  
PRAVEEN KUMAR

An attempt has been made to study the Physico-chemical condition of water of Yamuna River at Gokul Barrage, Mathura, (UP). The time period of study was July 2015 to June 2016. Three water samples were selected from different sites in each month for study. The parameters studied were Temperature, Turbidity, pH, DO, BOD, COD, Total Dissolved Solids and Suspended Solids. Almost all the parameters were found above the tolerance limit.


2014 ◽  
Vol 4 (2) ◽  
pp. 467-476
Author(s):  
Nisha Sharma ◽  
Jaspal Singh ◽  
Barjinder Kaur

Radionuclides (uranium, thorium, radium, radon gas etc.) are found naturally in air, water, soil and rock. Everyday, we ingest and inhale these radionuclides through the air we breathe and through food and water we take. Out of the internal exposure via ingestion of radionuclides, water contributes the major portion. The natural radioactivity of water is due to the activity transfer from bed rock and soils. In our surveys carried out in the past few years, we have observed high concentrations of uranium and total dissolved solids (TDS) in drinking waters of some southern parts of Punjab State exceeding the safe limits recommended by national and international agencies. The main drinking water source is the underground water procured from different depths. Due to the highly saline taste, disorders in their digestive systems and other ailments, people are installing reverse osmosis (RO) systems in their houses. Some RO systems have been installed on commercial basis. The state government is also in the process of installing community RO systems at the village level. As high values of uranium are also undesired and may pose health hazards due to radioactivity and toxicity of uranium, we have conducted a survey in the field to study the performance of various RO systems for removal of uranium and TDS. Water samples from about forty RO systems from Faridkot, Mansa, Bathinda and Amritsar districts of Punjab State were collected and analyzed. Our results show that some RO systems are able to remove more than 99% of uranium in the underground waters used for drinking purposes. TDS values are also reduced considerably to the desired levels. So RO systems can be used to avoid the risk of unduly health problems posed by high concentrations of uranium and TDS in drinking water.


2015 ◽  
Vol 4 (2) ◽  
pp. 50-55
Author(s):  
Sandra J Nendissa ◽  
Rachel Breemer ◽  
Nikholaus Melamas

This objectives of this research were both to study and determine the best level of concentration of yeast Saccharomyces cereviseae and period of fermentation on the quality of tomi-tomi vinegar (Flacourtia inermis). A completely randomized experimental design with two factors of treatment was applied in this research. The first factor was concentration of yeast S. cereviseae having four levels of tretament, i.e.: without the addition of yeast 0.5, 1 and 1.5 g yeast. The second factor was period fermentation with 1, 2, 3, 4, and 5 weeks. The result indicated that the concentration of yeast S. cereviseae 1.5 g and period fermentation 5 week produced a good tomi-tomi vinegar with total acids 51.22%, total dissolved solids 8.35, total sugar 8.07% and pH 5.40.


2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Jefrianta Demu Geri ◽  
Dewi Fortuna Ayu ◽  
Noviar Harun

The purpose of this study was to determine the optimal ratio of carbonated aloe vera drink and lemon juice. This research used completely randomized design with four treatments and four replications. The treatments performed were L1 (90% carbonated aloe vera and 10% lemon juice), L2 (80% carbonated aloe vera and 20% lemon juice), L3 (70% carbonated aloe vera and 30% lemon juice), and L4 (60% carbonated aloe vera and 40% lemon juice). Data were statistically analyzed by using analysis of variance (ANOVA) and followed by duncan new multiple range test (DNMRT) at level 5%. The combination treatments of carbonated aloe vera drinks and lemon juice had a significant effect on acidity (pH), vitamin C, total dissolved solids, and descriptive and hedonic sensory assessment. The best treatment from the research was L3 (70% carbonated aloe vera and 30% lemon juice) with pH of 4.26, vitamin C of 19.97 mg, and total dissolved solids of 14.34°brix. The overall sensory test result preferred by panelists with descriptions of yellow color, lemon flavor, and had a slightly sweet taste.


2019 ◽  
Vol 7 (1) ◽  
pp. 11-16
Author(s):  
Abdulkhaleq K Mahmood ◽  
Ali A Kamal ◽  
Ako R Hama

The scarcity of safe drinking water is one of the problems faced by the majority of cities in the world. Kirkuk city is one of these cities, which suffer from a shortage of drinking water. People have adopted the use of different rooftop tanks to overcome this problem. This research focuses on studying the effect of storage time on the five main characteristics of drinking water, which include, acid index (pH), electrical conductivity (EC), total suspended solids (TSS), total dissolved solids (TDS), and turbidity (Tr). Three types of tanks were used predominantly (galvanized metal, plastic, and aluminum tanks). By analyzing the results, the characteristics of three samples of municipal source water obtained. Three samples were taken from each tank at different periods (4, 8, and 12 days). The results showed that the storage time affected the characteristics of drinking water. These characteristics differed from one tank to another. Metal tanks showed an increase in total dissolved solids, due to the evaporation process, even as plastic and aluminum tanks showed an increase in pH. The properties of all storage water tanks changed with times, but overall, the results were within the Iraqi limitation for drinking water. It was not easy to only depend on the results of this study to believe that any one type of water tank was better than the other, as the values of most of the variables studied had varied from one type to other. However, many studies have indicated a number of health risks, and most significantly with regard to plastic tanks, which are said to contain dangerous organic compounds that can be transferred to water. Metal tanks can cause zinc leakage, caused by a number of environmental factors at high levels. Aluminum tanks also can have an effect on the water in tanks.


Our Nature ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 48-54
Author(s):  
Ram Bhajan Mandal ◽  
Sunila Rai ◽  
Madhav Kumar Shrestha ◽  
Dilip Kumar Jha ◽  
Narayan Prasad Pandit

An experiment was carried to assess the effect of red algal bloom on growth and production of carp, water quality and profit from carp for 120 days at Aquaculture Farm of Agriculture and Forestry University, Chitwan. The experiment included two treatments: carp polyculture in non-red pond and carp polyculture in red pond with algal bloom each with three replicates. Carp fingerlings were stocked at 1 fish/m2 and fed with pellet containing 24% CP at 3% body weight. Net yield of rohu was found significantly higher (p<0.05) in non-red ponds (0.38±0.01 t ha-1) than red ponds (0.24±0.05 t ha-1). Survival of rohu (84.9±1.4%), bighead (95.2±2.0%) and mrigal (88.1±14.4%) were also significantly higher (p<0.05) in non-red ponds than red ponds. Red algal bloom affected DO, nitrate and chlorophyll-a, nitrite, total nitrogen, total phosphorus, total dissolved solids and conductivity. However, overall carp production and profit from carp remained unaffected.


Sign in / Sign up

Export Citation Format

Share Document