scholarly journals Challenges in water resources of Lagos mega city of Nigeria in the context of climate change

2019 ◽  
Vol 11 (4) ◽  
pp. 1067-1083 ◽  
Author(s):  
Mohammed Sanusi Shiru ◽  
Shamsuddin Shahid ◽  
Suleiman Shiru ◽  
Eun Sung Chung ◽  
Noraliani Alias ◽  
...  

Abstract This study assesses the water resources and environmental challenges of Lagos mega city, Nigeria, in the context of climate change. Being a commercial hub, the Lagos population has grown rapidly causing an insurmountable water and environmental crisis. In this study, a combined field observation, sample analysis, and interviews were used to assess water challenges. Observed climate, general circulation model (GCM) projections and groundwater data were used to assess water challenges due to climate change. The study revealed that unavailability of sufficient water supply provision in Lagos has overwhelmingly compelled the population to depend on groundwater, which has eventually caused groundwater overdraft. Salt water intrusion and subsidence has occurred due to groundwater overexploitation. High concentrations of heavy metals were observed in wells around a landfill. Climate projections showed a decrease in rainfall of up to 140 mm and an increase in temperature of up to 8 °C. Groundwater storage is projected to decrease after the mid-century due to climate change. Sea level rise will continue until the end of the century. As the water and environmental challenges of Lagos are broad and the changing characteristics of the climate are expected to intensify these as projected, tackling these challenges requires a holistic approach from an integrated water resources management perspective.

MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 229-244
Author(s):  
K. RUPA KUMAR ◽  
R. G. ASHRIT

The regional climatic impacts associated with global climatic change and their assessment are very important since agriculture, water resources, ecology etc., are all vulnerable to climatic changes on regional scale. Coupled Atmosphere-Ocean general circulation model (AOGCM) simulations provide a range of scenarios, which can be used, for the assessment of impacts and development of adaptive or mitigative strategies. Validation of the models against the observations and establishing the sensitivity to climate change forcing are essential before the model projections are used for assessment of possible impacts. Moreover model simulated climate projections are often of coarse resolution while the models used for impact assessment, (e.g. crop simulation models, or river runoff models etc.) operate on a higher spatial resolution. This spatial mismatch can be overcome by adopting an appropriate strategy of downscaling the GCM output.   This study examines two AOGCM (ECHAM4/OPYC3 and HadCM2) climate change simulations for their performance in the simulation of monsoon climate over India and the sensitivity of the simulated monsoon climate to transient changes in the atmospheric concentrations of greenhouse gases and sulfate aerosols. The results show that the two models simulate the gross features of climate over India reasonably well. However the inter-model differences in simulation of mean characteristics, sensitivity to forcing and in the simulation of climate change suggest need for caution. Further an empirical downscaling approach in used to assess the possibility of using GCM projections for preparation of regional climate change scenario for India.


2011 ◽  
Vol 3 (4) ◽  
pp. 281-292 ◽  
Author(s):  
Scott Greene ◽  
Laurence S. Kalkstein ◽  
David M. Mills ◽  
Jason Samenow

Abstract This study examines the impact of a changing climate on heat-related mortality in 40 large cities in the United States. A synoptic climatological procedure, the spatial synoptic classification, is used to evaluate present climate–mortality relationships and project how potential climate changes might affect these values. Specifically, the synoptic classification is combined with downscaled future climate projections for the decadal periods of 2020–29, 2045–55, and 2090–99 from a coupled atmospheric–oceanic general circulation model. The results show an increase in excessive heat event (EHE) days and increased heat-attributable mortality across the study cities with the most pronounced increases projected to occur in the Southeast and Northeast. This increase becomes more dramatic toward the end of the twenty-first century as the anticipated impact of climate change intensifies. The health impact associated with different emissions scenarios is also examined. These results suggest that a “business as usual” approach to greenhouse gas emissions mitigation could result in twice as many heat-related deaths by the end of the century than a lower emissions scenario. Finally, a comparison of future estimates of heat-related mortality during EHEs is presented using algorithms developed during two different, although overlapping, time periods, one that includes some recent large-scale significant EHE intervention strategies (1975–2004), and one without (1975–95). The results suggest these public health responses can significantly decrease heat-related mortality.


2016 ◽  
Vol 8 (1) ◽  
pp. 10-21
Author(s):  
Narayan P Gautam ◽  
Manohar Arora ◽  
N.K. Goel ◽  
A.R.S. Kumar

Climate change has been emerging as one of the challenges in the global environment. Information of predicted climatic changes in basin scale is highly useful to know the future climatic condition in the basin that ultimately becomes helpful to carry out planning and management of the water resources available in the basin. Climatic scenario is a plausible and often simplified representation of the future climate, based on an internally consistent set of climatological relationships that has been constructed for explicit use in investigating the potential consequences of anthropogenic climate change. This study based on statistical downscaling, provide good example focusing on predicting the rainfall and runoff patterns, using the coarse general circulation model (GCM) outputs. The outputs of the GCMs are utilized to study the impact of climate change on water resources. The present study has been taken up to identify the climate change scenarios for Satluj river basin, India.Journal of Hydrology and Meteorology, Vol. 8(1) p.10-21


2020 ◽  
Vol 51 (4) ◽  
pp. 781-798 ◽  
Author(s):  
Saleem A. Salman ◽  
Mohamed Salem Nashwan ◽  
Tarmizi Ismail ◽  
Shamsuddin Shahid

Abstract Reduction of uncertainty in climate change projections is a major challenge in impact assessment and adaptation planning. General circulation models (GCMs) along with projection scenarios are the major sources of uncertainty in climate change projections. Therefore, the selection of appropriate GCMs for a region can significantly reduce uncertainty in climate projections. In this study, 20 GCMs were statistically evaluated in replicating the spatial pattern of monsoon propagation towards Peninsular Malaysia at annual and seasonal time frames against the 20th Century Reanalysis dataset. The performance evaluation metrics of the GCMs for different time frames were compromised using a state-of-art multi-criteria decision-making approach, compromise programming, for the selection of GCMs. Finally, the selected GCMs were interpolated to 0.25° × 0.25° spatial resolution and bias-corrected using the Asian Precipitation – Highly-Resolved Observational Integration Towards Evaluation (APHRODITE) rainfall as reference data. The results revealed the better performance of BCC-CSM1-1 and HadGEM2-ES in replicating the historical rainfall in Peninsular Malaysia. The bias-corrected projections of selected GCMs revealed a large variation of the mean, standard deviation and 95% percentile of daily rainfall in the study area for two futures, 2020–2059 and 2060–2099 compared to base climate.


2012 ◽  
Vol 25 (19) ◽  
pp. 6567-6584 ◽  
Author(s):  
Andrei P. Sokolov ◽  
Erwan Monier

Abstract Conducting probabilistic climate projections with a particular climate model requires the ability to vary the model’s characteristics, such as its climate sensitivity. In this study, the authors implement and validate a method to change the climate sensitivity of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 3 (CAM3), through cloud radiative adjustment. Results show that the cloud radiative adjustment method does not lead to physically unrealistic changes in the model’s response to an external forcing, such as doubling CO2 concentrations or increasing sulfate aerosol concentrations. Furthermore, this method has some advantages compared to the traditional perturbed physics approach. In particular, the cloud radiative adjustment method can produce any value of climate sensitivity within the wide range of uncertainty based on the observed twentieth century climate change. As a consequence, this method allows Monte Carlo–type probabilistic climate forecasts to be conducted where values of uncertain parameters not only cover the whole uncertainty range, but cover it homogeneously. Unlike the perturbed physics approach that can produce several versions of a model with the same climate sensitivity but with very different regional patterns of change, the cloud radiative adjustment method can only produce one version of the model with a specific climate sensitivity. As such, a limitation of this method is that it cannot cover the full uncertainty in regional patterns of climate change.


2009 ◽  
Vol 9 (3) ◽  
pp. 879-894 ◽  
Author(s):  
L. Vasiliades ◽  
A. Loukas ◽  
G. Patsonas

Abstract. Despite uncertainties in future climates, there is considerable evidence that there will be substantial impacts on the environment and human interests. Climate change will affect the hydrology of a region through changes in the timing, amount, and form of precipitation, evaporation and transpiration rates, and soil moisture, which in turn affect also the drought characteristics in a region. Droughts are long-term phenomena affecting large regions causing significant damages both in human lives and economic losses. The most widely used approach in regional climate impact studies is to combine the output of the General Circulation Models (GCMs) with an impact model. The outputs of Global Circulation Model CGCMa2 were applied for two socioeconomic scenarios, namely, SRES A2 and SRES B2 for the assessment of climate change impact on droughts. In this study, a statistical downscaling method has been applied for monthly precipitation. The methodology is based on multiple regression of GCM predictant variables with observed precipitation developed in an earlier paper (Loukas et al., 2008) and the application of a stochastic timeseries model for precipitation residuals simulation (white noise). The methodology was developed for historical period (1960–1990) and validated against observed monthly precipitation for period 1990–2002 in Lake Karla watershed, Thessaly, Greece. The validation indicated the accuracy of the methodology and the uncertainties propagated by the downscaling procedure in the estimation of a meteorological drought index the Standardized Precipitation Index (SPI) at multiple timescales. Subsequently, monthly precipitation and SPI were estimated for two future periods 2020–2050 and 2070–2100. The results of the present study indicate the accuracy, reliability and uncertainty of the statistical downscaling method for the assessment of climate change on hydrological, agricultural and water resources droughts. Results show that climate change will have a major impact on droughts but the uncertainty introduced is quite large and is increasing as SPI timescale increases. Larger timescales of SPI, which, are used to monitor hydrological and water resources droughts, are more sensitive to climate change than smaller timescales, which, are used to monitor meteorological and agricultural droughts. Future drought predictions should be handled with caution and their uncertainty should always be evaluated as results demonstrate.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1562 ◽  
Author(s):  
Nahlah Abbas ◽  
Saleh Wasimi ◽  
Nadhir Al-Ansari ◽  
Sultana Nasrin Baby

Iraq has been experiencing water resources scarcity, and is vulnerable to climate change. Analysis of historical data revealed that the region is experiencing climate change to a degree higher than generally reported elsewhere. The relationship between climate change and its effect on water resources of a region has been sparsely addressed in published literature. To fill that gap this research work first investigates if there has been a significant change in climate in the region, which has been found to be true. In the next stage, the research projects future climatic scenarios of the region based on six oft-used General Circulation Model (GCM) ensembles, namely CCSM4, CSIRO-Mk3.6.0, GFDL-ESM2M, MEROC5, HadGEM2-ES, and IPSL-CM5A-LR. The relationship between climate change and its impact on water resources is explored through the application of the popular, widely used SWAT model. The model depicts the availability of water resources, classified separately as blue and green waters, for near and distant futures for the region. Some of the findings are foreboding and warrants urgent attention of planners and decision makers. According to model outputs, the region may experience precipitation reduction of about 12.6% and 21% in near (2049–2069) and distant (2080–2099) futures, respectively under RCP8.5. Those figures under RCP4.5 are 15% and 23.4%, respectively and under RCP2.6 are 12.2% and 18.4%, respectively. As a consequence, the blue water may experience decreases of about 22.6% and 40% under RCP8.5, 25.8% and 46% under RCP4.5, and 34.4% and 31% under RCP2.6 during the periods 2049–2069 and 2080–2099, respectively. Green water, by contrast, may reduce by about 10.6% and 19.6% under RCP8.5, by about 14.8% and 19.4% under RCP4.5, and by about 15.8% and 14.2% under RCP2.6 during the periods 2049–2069 and 2080–2099, respectively. The research further investigates how the population are adapting to already changed climates and how they are expected to cope in the future when the shift in climate is expected to be much greater.


2018 ◽  
Vol 31 (14) ◽  
pp. 5667-5680 ◽  
Author(s):  
Timothy J. Osborn ◽  
Craig J. Wallace ◽  
Jason A. Lowe ◽  
Dan Bernie

Pattern scaling is widely used to create climate change projections to investigate future impacts. We consider the performance of pattern scaling for emulating the HadGEM2-ES general circulation model (GCM) paying particular attention to “high end” warming scenarios and to different choices of GCM simulations used to diagnose the climate change patterns. We demonstrate that evaluating pattern-scaling projections by comparing them with GCM simulations containing unforced variability gives a significantly less favorable view of the actual performance of pattern scaling. Using a four-member initial-condition ensemble of HadGEM2-ES simulations, we infer that the root-mean-square errors of pattern-scaled monthly temperature changes over land are less than 0.25°C for global warming up to approximately 3.5°C. Some regional errors are larger than this and, for this GCM, there is a tendency for pattern scaling to underestimate warming over land. For warming above 3.5°C, the pattern-scaled projection errors grow but remain small relative to the climate change signal. We investigate whether patterns diagnosed by pooling GCM experiments from several scenarios are suitable for emulating the GCM under a high-end warming scenario. For global warming up to 3.5°C, pattern scaling using this pooled pattern closely emulates GCM simulations. For warming beyond 3.5°C, pattern-scaling performance is notably improved by using patterns diagnosed only from the high-forcing representative concentration pathway 8.5 (RCP8.5) scenario. Assessments of climate change impacts under high-end warming using pattern-scaling projections could be improved by using change patterns diagnosed from pooled scenarios for projections up to 3.5°C above preindustrial levels and patterns diagnosed from only strong forcing simulations for projecting beyond that. Similar findings are obtained for five other GCMs.


2014 ◽  
Vol 5 (4) ◽  
pp. 676-695 ◽  
Author(s):  
Mou Leong Tan ◽  
Darren L. Ficklin ◽  
Ab Latif Ibrahim ◽  
Zulkifli Yusop

The impact of climate change and uncertainty of climate projections from general circulation models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) on streamflow in the Johor River Basin, Malaysia was assessed. Eighteen GCMs were evaluated, and the six that adequately simulated historical climate were selected for an ensemble of GCMs under three Representative Concentration Pathways (RCPs; 2.6 (low emissions), 4.5 (moderate emissions) and 8.5 (high emissions)) for three future time periods (2020s, 2050s and 2080s) as inputs into the Soil and Water Assessment Tool (SWAT) hydrological model. We also quantified the uncertainties associated with GCM structure, greenhouse gas concentration pathways (RCP 2.6, 4.5 and 8.5), and prescribed increases of global temperature (1–6 °C) through streamflow changes. The SWAT model simulated historical monthly streamflow well, with a Nash–Sutcliffe efficiency coefficient of 0.66 for calibration and 0.62 for validation. Under RCPs 2.6, 4.5, and 8.5, the results indicate that annual precipitation changes of 1.01 to 8.88% and annual temperature of 0.60–3.21 °C will lead to a projected annual streamflow ranging from 0.91 to 12.95% compared to the historical period. The study indicates multiple climate change scenarios are important for a robust hydrological impact assessment.


2020 ◽  
Vol 12 (23) ◽  
pp. 9890
Author(s):  
Samira Shayanmehr ◽  
Shida Rastegari Henneberry ◽  
Mahmood Sabouhi Sabouni ◽  
Naser Shahnoushi Foroushani

The main purpose of the study was to investigate the effects of climatic change on potato yield and yield variability in Agro-Ecological Zones (AEZs) of Iran during 2041–2070 (2050s). The Statistical Downscaling Model (SDSM) was performed in this study to downscale the outputs of the General Circulation Model (GCM) and to obtain local climate projections under climate scenarios for a future period. The Just and Pope Production function was used to investigate the impacts of climatic change on potato yield. The results showed that the effects of future climatic change on potato yield and its variability would vary among the different AEZs. Potato yield would change in the range from −11% to 36% across different AEZs during the 2050s. Yield variability is expected to vary from −29% to 6%. Much more generally, the results indicated that the major potato producing zones would experience a decrease in mean potato yield in the presence of climate change. Our findings would help policymakers and planners in designing appropriate policies to allocate the lands under potato cultivation among different zones. These results also have important implications for adopting ecological zone-specific strategies to mitigate the reduction in potato yield and meet food security.


Sign in / Sign up

Export Citation Format

Share Document