Fouling analysis of ultrafiltration and nanofiltration membranes

2006 ◽  
Vol 1 (4) ◽  
Author(s):  
D. B. Mosqueda-Jimenez ◽  
P. M. Huck

Chemical and microbiological analyses were performed in an attempt to obtain a better understanding of the reduction of membrane fouling via the use of feed pretreatment. Biofiltration was chosen as pretreatment due to its potential to be a sustainable process coupled with membrane filtration. Biofiltration effectively reduced the concentration of organic and biological matter in the feed solution, decreasing the material deposited on the membrane surface approximately by half. More importantly, it reduced the loss of permeability during the operation of UF and NF membranes. However, it is believed that the performance of biofiltration as membrane pretreatment can be further improved with a greater understanding of the material that causes membrane fouling. This way the biofilter design and operation can be optimized to specifically minimize the concentration of this fouling material.

2004 ◽  
Vol 4 (5-6) ◽  
pp. 215-222 ◽  
Author(s):  
A.R. Costa ◽  
M.N. de Pinho

Membrane fouling by natural organic matter (NOM), namely by humic substances (HS), is a major problem in water treatment for drinking water production using membrane processes. Membrane fouling is dependent on membrane morphology like pore size and on water characteristics namely NOM nature. This work addresses the evaluation of the efficiency of ultrafiltration (UF) and Coagulation/Flocculation/UF performance in terms of permeation fluxes and HS removal, of the water from Tagus River (Valada). The operation of coagulation with chitosan was evaluated as a pretreatment for minimization of membrane fouling. UF experiments were carried out in flat cells of 13.2×10−4 m2 of membrane surface area and at transmembrane pressures from 1 to 4 bar. Five cellulose acetate membranes were laboratory made to cover a wide range of molecular weight cut-off (MWCO): 2,300, 11,000, 28,000, 60,000 and 75,000 Da. Severe fouling is observed for the membranes with the highest cut-off. In the permeation experiments of raw water, coagulation prior to membrane filtration led to a significant improvement of the permeation performance of the membranes with the highest MWCO due to the particles and colloidal matter removal.


Author(s):  
A. U. Krupp ◽  
I. M. Griffiths ◽  
C. P. Please

Membrane fouling during particle filtration occurs through a variety of mechanisms, including internal pore clogging by contaminants, coverage of pore entrances and deposition on the membrane surface. In this paper, we present an efficient method for modelling the behaviour of a filter, which accounts for different retention mechanisms, particle sizes and membrane geometries. The membrane is assumed to be composed of a series of, possibly interconnected, pores. The central feature is a conductivity function , which describes the blockage of each individual pore as particles arrive, which is coupled with a mechanism to account for the stochastic nature of the arrival times of particles at the pore. The result is a system of ordinary differential equations based on the pore-level interactions. We demonstrate how our model can accurately describe a wide range of filtration scenarios. Specifically, we consider a case where blocking via multiple mechanisms can occur simultaneously, which have previously required the study through individual models; the filtration of a combination of small and large particles by a track-etched membrane and particle separation using interconnected pore networks. The model is significantly faster than comparable stochastic simulations for small networks, enabling its use as a tool for efficient future simulations.


Membranes ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 168 ◽  
Author(s):  
Anh Vu ◽  
Naama Segev Mark ◽  
Guy Z. Ramon ◽  
Xianghong Qian ◽  
Arijit Sengupta ◽  
...  

Membrane-based processes are attractive for treating oily wastewaters. However, membrane fouling due to the deposition of oil droplets on the membrane surface compromises performance. Here, real-time observation of the deposition of oil droplets by direct confocal microscopy was conducted. Experiments were conducted in dead-end and crossflow modes. Base NF 270 nanofiltration membranes as well as membranes modified by grafting poly(N-isopropylacrylamide) chains from the membrane surface using atom transfer radical polymerization were investigated. By using feed streams containing low and high NaCl concentrations, the grafted polymer chains could be induced to switch conformation from a hydrated to a dehydrated state, as the lower critical solution temperature for the grafted polymer chains moved above and below the room temperature, respectively. For the modified membrane, it was shown that switching conformation of the grafted polymer chains led to the partial release of adsorbed oil. The results also indicate that, unlike particles such as polystyrene beads, adsorption of oil droplets can lead to coalescence of the adsorbed oil droplets on the membrane surface. The results provide further evidence of the importance of membrane properties, feed solution characteristics, and operating mode and conditions on membrane fouling.


2013 ◽  
Vol 864-867 ◽  
pp. 394-398
Author(s):  
Li Qing Zhang ◽  
Gang Zhang

Nanofiltration membranes act an important role in the advanced water treatment as well as waste water reclamation and other industrial separations. Therefore, an understanding of the factors affecting NF separation and membrane fouling in high-pressure membrane systems is needed. Recent studies have shown that membrane surface morphology and structure as well as surface chemical characteristics influence permeability, rejection, and fouling behavior of nanofiltration (NF) membranes. A comprehensive literature review is reported, targeting the physical-chemical characteristics of NF membrane affecting separation and fouling, including pore size, porosity, surface morphology (measured as roughness), surface charge, and hydrophobicity/ hydrophilicity.


2016 ◽  
Vol 1 (1) ◽  
pp. 1 ◽  
Author(s):  
M. R. Bilad ◽  
M. Baten ◽  
A. Pollet ◽  
C. Courtin ◽  
J. Wouters ◽  
...  

A novel in-situ enzymatic cleaning method was developed for fouling control in membrane bioreactors (MBRs). It is achieved by bringing the required enzymes near the membrane surface by pulling the enzymes to a magnetic membrane (MM) surface by means of magnetic forces, exactly where the cleaning is required. To achieve this, the enzyme was coupled to a magnetic nanoparticle (MNP) and the membrane it self was loaded with MNP. The magnetic activity was turned by means of an external permanent magnet. The effectiveness of concept was tested in a submerged membrane filtration using the model enzyme-substrate of Bacillus subitilis xylanase-arabinoxylan. The MM had almost similar properties compared to the unloaded ones, except for its well distributed MNPs. The enzyme was stable during coupling conditions and the presence of coupling could be detected using a high-performance anion-exchange chromatography (HPAEC) analysis and Fourier transform infrared spectroscopy (FTIR). The system facilitated an in-situ enzymatic cleaning and could be effectively applied for control fouling in membrane bioreactors (MBRs).


2021 ◽  
Author(s):  
Westphalen Dornelas Camara Heloisa

Membrane separation processes have been more widely applied to industrial activities, especially in water and wastewater treatment. However, there are still challenges associated to the use of membranes. Concentration polarization and fouling can cause significant permeate flux decay during the filtration process, hindering its efficiency and increasing cost. Among many strategies, the combination of membrane filtration with ultrasound (US) application has shown promising results in reducing membrane fouling. The main goal of this research was to identify the effect of US frequency, US power intensity and feed solution concentration on permeate flux during ultrafiltration of simulated latex paint effluent. Maximum increase in permeate flux of 19.7% was obtained by applying 20 kHz and 0.29 W.cm-2 to feed solution with 0.075 wt.% of solid concentration. The effect of feed flow rate was analyzed showing that an increase in feed flowrate is not beneficial to the fouling minimization process. Overall, the application of US improves permeate flux by reducing fouling of ultrafiltration polymeric membrane.


2018 ◽  
Vol 6 (2) ◽  
pp. 313-333 ◽  
Author(s):  
Rikarani R. Choudhury ◽  
Jaydevsinh M. Gohil ◽  
Smita Mohanty ◽  
Sanjay K. Nayak

Membrane fouling, which arises from the nonspecific interaction between the membrane surface and foulants, significantly impedes the efficient application of membrane technology.


Author(s):  
Zaid S Saleh ◽  
Roger Stanley ◽  
Reginald Wibisono

The performance of nano-filtration (NF) for separating phenolic compounds from sugar in apple juice was studied using 1 and 0.25 kDa molecular weight cut-off (MWCO) spiral wound membranes. If these phenolic compounds could be recovered, they could stabilize the juice from haze formation or be added as antioxidants to foods and beverages in order to increase their health properties. Batch experiments were conducted on a pilot scale rig using a diluted clear apple juice concentrate. For the 1 kDa MWCO membrane, the research determined the effect of operating conditions on process efficiency and membrane fouling. The concentration of polyphenolics on the retentate side increased by a factor of up to 4 and the sugar concentration increased by 1.5 times under optimum conditions of lower temperature (30oC), acidic pH (2), lower trans-membrane pressure (5 Bar) and higher initial sugar concentration (20 oBrix). Despite the increase in polyphenolics in the retentate, there was little difference in the phenolic composition between retentate and permeate solutions. As the molecular mass of the rejected phenolics was smaller than the membrane cut-off, this indicated that the rejection was related to the formation of a secondary membrane formed as a result of fouling. A mass balance of polyphenolics in the final retentate and permeate compared with the initial feed solution indicated that up to 4.3 gm of polyphenolics were bound per m2 of membrane. The permeate solutions collected from the 1 kDa MWCO membrane were then filtered using a 0.25 kDa MWCO membrane. Most phenolic compounds were retained by the membrane and the concentration increased by a factor of up to 2. Catechin, rutin, phloridzin and quercetin derivatives were concentrated on the retentate side. However, around 20 - 40% of chlorogenic acid and epicatechin was observed on the permeate side. It is concluded that membrane separation represents a potentially efficient and cost-effective technology to separate the phenolic fraction of fruit juice in a form suitable for use as a functional ingredient.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1178
Author(s):  
Jenyuk Lohwacharin ◽  
Thitiwut Maliwan ◽  
Hideki Osawa ◽  
Satoshi Takizawa

The presence of multiple contaminant species in surface waters makes surface water treatment difficult to accomplish through a single process. Herein, we evaluated the ability of an integrated adsorption/ultrafiltration (UF) membrane filtration system to simultaneously remove phosphates and dissolved organic matter (DOM). When bare powdered activated carbon (PAC) and PAC impregnated with amorphous ferrihydrite (FHPAC) adsorbents were compared, FHPAC showed a greater adsorption rate and capacity for phosphate. FHPAC had a phosphate adsorption capacity of 2.32 mg PO43−/g FHPAC, even when DOM was present as a competing adsorbate. In a lab-scale hybrid FHPAC-UF system (i.e. integrated adsorption by FHPAC with UF membrane filtration), irreversible membrane fouling was ca. three times lower than that in a PAC-UF system. When membrane fouling in the PAC-UF system was described with pore blockage models, we found that the main cause of fouling was bacterial deposition on the membrane surface. CLSM analysis determined that the chemical composition of foulants in the PAC-UF system included higher proportions of proteins, nucleic acids, and alpha-polysaccharides than that in the FHPAC-UF system. Overall, FHPAC’s ability to undergo ligand exchanges with DOM helped to reduce the nutrients and bacteria that cause biofouling to accumulate on the membrane surface.


2021 ◽  
Vol 25 (2) ◽  
pp. 73-88
Author(s):  
Z. H. Chang ◽  
Y. H. Teow ◽  
S. P. Yeap ◽  
J. Y. Sum

Forward osmosis (FO) is an osmotically driven membrane separation process. It is potentially applied in various industries for nutrient recovery and water reclamation. Although FO showed a lesser fouling tendency than other pressure-driven membrane processes, the solutes in the feed solution would still deposit on the membrane surface, forming a fouling layer that resists water permeation. For that reason, fouling mitigation is a trending issue in the FO process. A better understanding of the fouling mechanism is required before opting for the appropriate strategy to mitigate it. This article describes the fouling mechanism based on different foulant presented in the feed, followed by a method in relieving fouling in the FO process.


Sign in / Sign up

Export Citation Format

Share Document