scholarly journals Integrated constructed wetlands treating industrial wastewater from seed production

Author(s):  
Elizabeth Kiflay ◽  
Juma Selemani ◽  
Karoli Njau

Abstract The performance of an integrated wastewater treatment system composed of horizontal subsurface flow constructed wetland (HSSFCW), floating constructed wetland (FCW), and anaerobic baffled reactor (ABR) was studied for pollutant removal from seed production wastewater. Cyperus alternifolius (Umbrella Papyrus) plants were used in the HSSFCW, and Vetiveria zizanioides (Vetiver grass) in the FCW. The ABR was fed with 25 m3/d wastewater from its equalization tank. The average raw wastewater organic loading rate was 0.208 kg-COD/d. Grab wastewater samples were collected twice weekly for three months from each unit's inlet and outlet. The system's performance in removing biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids (TSS), turbidity, nitrate, phosphate, and ammonium was studied. The average removal efficiencies obtained were 95.5% BOD5, 94.6% COD, 86.2% TSS, 76.6% turbidity, 82.4% nitrate, 76% phosphate, and 32.9% ammonium. The results show that integrating ABR, HSSFCW, and FCW improves pollutant removal from seed production wastewater, and the treated water can be used for agricultural purposes.

2020 ◽  
Vol 82 (10) ◽  
pp. 1995-2006
Author(s):  
Mai Huong ◽  
Dan-Tam Costa ◽  
Bui Van Hoi

Abstract Vietnam, like many developing countries, is facing serious water quality issues due to discharging wastewaters without treatment or with improper treatment, which can constitute a potential risk for aquatic ecosystems, food safety and human health. Hybrid constructed wetlands with four substrate layers (HCW) and modified hybrid constructed wetland (MHCW-1 and MHCW-2) with seven substrate layers were designed to evaluate the enhanced treatment capacity for wastewaters. To this end, we carried out an outdoor experiment at the Vietnam Academy of Science and Technology, Vietnam to treat its wastewaters from April to August 2019. All constructed wetland units were planted with reed Phragmites australis and cyperus Cyperus alternifolius; and specifically wetland MHCW-2 was cultured with earthworm Perionys excavates. Results indicated that MHCW-1 and MHCW-2 with seven substrate layers had higher removal efficiencies of -N, TKN and TP than HCW system. More substrate layers in MHCW-1 and MHCW-2 also resulted in increase of Cu and Pb removal efficiencies, with 73.5%, 79.4%, 71.5% and 67.8%, respectively. Particularly, earthworm addition in MHCW-2 was more efficient in decreasing the concentrations of biochemical oxygen demand (BOD5), with removal efficiency over 70%.


2021 ◽  
Vol 11 (4) ◽  
pp. 1889 ◽  
Author(s):  
Agnieszka Micek ◽  
Krzysztof Jóźwiakowski ◽  
Michał Marzec ◽  
Agnieszka Listosz ◽  
Tadeusz Grabowski

The results of research on the efficiency and technological reliability of domestic wastewater purification in two household wastewater treatment plants (WWTPs) with activated sludge are presented in this paper. The studied facilities were located in the territory of the Roztocze National Park (Poland). The mean wastewater flow rate in the WWTPs was 1.0 and 1.6 m3/day. In 2017–2019, 20 series of analyses were done, and 40 wastewater samples were taken. On the basis of the received results, the efficiency of basic pollutant removal was determined. The technological reliability of the tested facilities was specified using the Weibull method. The average removal efficiencies for the biochemical oxygen demand in 5 days (BOD5) and chemical oxygen demand (COD) were 66–83% and 62–65%, respectively. Much lower effects were obtained for total suspended solids (TSS) and amounted to 17–48%, while the efficiency of total phosphorus (TP) and total nitrogen (TN) removal did not exceed 34%. The analyzed systems were characterized by the reliability of TSS, BOD5, and COD removal at the level of 76–96%. However, the reliability of TN and TP elimination was less than 5%. Thus, in the case of biogenic compounds, the analyzed systems did not guarantee that the quality of treated wastewater would meet the requirements of the Polish law during any period of operation. This disqualifies the discussed technological solution in terms of its wide application in protected areas and near lakes, where the requirements for nitrogen and phosphorus removal are high.


2019 ◽  
Vol 80 (6) ◽  
pp. 1145-1154
Author(s):  
Agyemang Richard Osei ◽  
Yacouba Konate ◽  
Felix Kofi Abagale

Abstract Constructed wetland technology is an innovative engineering technique for faecal sludge (FS) management. The presence of emergent macrophytes enhances the important processes of evapotranspiration, sludge mineralisation, and contaminant reduction. Consequently, selecting a species that can withstand the difficult sludge contaminated conditions within a local context is vital. This study monitored the pollutant removal potentials and growth dynamics of Bambusa vulgaris and Cymbopogon nardus as promising macrophytes for the constructed wetland technology in the Sudano-Sahelian context. The experiment, at pilot scale, consisted of plastic reactors (27 litre) filled with filter media of sand and fine gravels at the base, and planted with the selected species. Pollutant removal efficiencies were evaluated based on differences between influent and effluent concentrations, and physiological growth parameters of plant height, number of leaves and number of plants were monitored monthly. Total annual sludge loading rate of 31.4 and 103.4 kg TS/(m2·yr) (TS: total solids) were determined for FS + wastewater (acclimatisation phase) and FS load respectively. Both species recorded appreciable pollutant removal efficiency >80% for the organic (chemical oxygen demand), nutrients (PO43_P and NH4-N) and solid (total suspended solids and total volatile solids) contents. The species thus demonstrated satisfactory performance of resistance for faecal polluted wetland conditions.


2018 ◽  
Vol 78 (11) ◽  
pp. 2374-2382 ◽  
Author(s):  
Van Tai Tang ◽  
Kannan Pakshirajan

Abstract Common porous concrete templates (CPCT) and advanced porous concrete templates (APCT) were employed in this study to construct wetlands for their applications in pollutant removal from storm runoff. The planting ability of the concrete was investigated by growing Festuca elata plants in them. Strength of the porous concrete (7.21 ± 0.19 Mpa) decreased by 1.8 and 4.9% over a period of six and 12 months, respectively, due to its immersion in lake water. The height and weight of Festuca elata grass growth on the porous concrete were observed to be 12.6–16.9 mm and 63.4–95.4 mg, respectively, after a duration of one month. Advanced porous concrete template based constructed wetland (APCT-CW) showed better removal of chemical oxygen demand (COD) (49.6%), total suspended solids (TSS) (58.9), NH3-N (52.4%), total nitrogen (TN) (47.7%) and total phosphorus (TP) (45.5%) in storm water, when compared with the common porous concrete template based constructed wetland (CPCT-CW) with 20.6, 29.8, 30.1, 35.4 and 26.9%, respectively. The removal of Pb, Ni, Zn by the CPCT-CW unit were 28.9, 33.3 and 42.3%, respectively, whereas these were 51.1, 62.5 and 53.8%, respectively, with the APCT-CW unit. These results demonstrate that the advanced porous concrete template in constructed wetland could be employed successfully for the removal of pollutants from urban storm water runoff.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1445 ◽  
Author(s):  
Michał Marzec ◽  
Krzysztof Jóźwiakowski ◽  
Anna Dębska ◽  
Magdalena Gizińska-Górna ◽  
Aneta Pytka-Woszczyło ◽  
...  

In this paper, the pollutant removal efficiency and the reliability of a vertical and horizontal flow hybrid constructed wetland (CW) planted with common reed, manna grass, and Virginia mallow were analyzed. The wastewater treatment plant, located in south-eastern Poland, treated domestic sewage at an average flow rate of 2.5 m3/d. The tests were carried out during five years of its operation (2014–2018). The following parameters were measured: biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, total nitrogen, and total phosphorus. The results showed that more than 95% of BOD5, COD, and total phosphorus was removed in the tested CW system. The average effectiveness of removal of total suspended solids and total nitrogen exceeded 86%. A reliability analysis performed using the Weibull probability model showed that the removal reliability in the tested CW was very high for BOD5, COD, total suspended solids, and total phosphorus (100%). The probability that the total nitrogen concentration in the treated effluents would reach the limit value (30 mg/L) established for effluents discharged from a treatment plant of less than 2000 PE (population equivalent) to standing waters was 94%. The values of all the pollution indicators in wastewater discharged to the receiver were significantly lower than the limit values required in Poland. The investigated hybrid CW system with common reed, manna grass, and Virginia mallow guaranteed stable low values of BOD5, COD, total suspended solids, and total phosphorus in the treated wastewater, which meant it was highly likely to be positively evaluated in case of an inspection.


2021 ◽  
Vol 258 ◽  
pp. 08011
Author(s):  
Van Nu Thai Thien ◽  
Dang Viet Hung ◽  
Nguyen Thi Thanh Hoa ◽  
Thi Ha Nguyen ◽  
Phan Thanh Trong

Anaerobic/Anoxic/Oxic – Membrane BioReactor (A2O-MBR) system including A2O unit at short solids retention time (SRT) for accumulation of PO43--P and MBR at long SRT for nitrification of NH4+-N was used to enhance simultaneous removal of nitrogen and phosphorus from brewery wastewater. The model of A2O-MBR system made from polyacrylic with the capacity of 49.5 liters was operated with organic loading rate of 0.75 kgCOD/m3.day. Nitrate recycling ratio was increased from 100 to 300% while sludge recirculation ratio was maintained at 100%. The results showed that for the nitrate recycling ratios of 100, 200, 300%, average NH4+-N and total nitrogen (TN) removal efficiencies of the model were 95.7 and 72.4, 99.2 and 86.7, 99.3 and 89.6%, respectively. The removal efficiencies of chemical oxygen demand (COD) and total phosphorus (TP) were over 90 and 75%, respectively, regardless of nitrate recirculation ratio. The output values of COD, NH4+-N, TN and TP were within the limits of Vietnam National Technical Regulation on Industrial Wastewater (QCVN 40:2011/BTNMT), column A, throughout the experiments. The model with recommended system configuration and optimum operational conditions could treat not only nitrogen but also phosphorus well due to appropriate nitrate recycling ratios.


2018 ◽  
Vol 78 (9) ◽  
pp. 1990-1996 ◽  
Author(s):  
Dengming Yan ◽  
Xinshan Song ◽  
Baisha Weng ◽  
Zhilei Yu ◽  
Wuxia Bi ◽  
...  

Abstract The aim of this study was to investigate the different performance of bioelectricity generation and wastewater treatment between constructed wetland (CW) respectively coupled with air-cathode microbial fuel cell (ACMFC) and microbial fuel cell (MFC) under a fed-batch mode. During a 75-day-operation, the voltage of CW-ACMFC and CW-MFC ranged from 0.36 to 0.52 V and from −0.04 to 0.07 V, indicating that the bioenergy output of CW-ACMFC was significantly higher than that of CW-MFC system. In addition, the maximum of power density of CW-ACMFC and CW-MFC was 4.21 and 0.005 mW m−2. Notably, the chemical oxygen demand (COD) and NH3-N removal efficiency of CW-ACMFC was slightly higher than that in CW-MFC, which resulted from a higher voltage accelerating the transport of electron donors and the growth of microorganisms and plants. This study possesses a probability of using ACMFC coupled with CW to enhance the pollutant removal performance in CW system.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1260 ◽  
Author(s):  
Mirco Milani ◽  
Simona Consoli ◽  
Alessia Marzo ◽  
Alessandra Pino ◽  
Cinzia Randazzo ◽  
...  

This paper reports a study on the performance of a multistage constructed wetland (CW) system adopted for winery wastewater and on the analysis of its suitability for irrigation reuse. The CW system treats about 3 m3·day−1 of wastewater produced by a small winery located in Sicily (insular Italy). Wastewater samples were collected at the CW inlet and outlet for physical–chemical and microbiological quality characterization. CW efficiency was evaluated on the basis of water quality improvement and of the achievement of Italian and EU irrigation reuse regulation limits. The CW system showed Chemical Oxygen Demand (COD) and Total Suspended Solids (TSS) mean removal rates of about 81% and 69%, and a maximum removal of about 99% (for both COD and TSS) occurred during grape harvest phase. The CW removal efficiencies for nutrients were 56% for TN and 38% for PO4-P, considering their low average concentrations at CW inlet. The CW system evidenced an effluent average quality compatible with the limits imposed by the Italian regulation and EU proposal regulation on the minimum requirement for water reuse. The CW vegetated area showed regular growth and vegetative development; phytotoxicity phenomena were not detected. The results of the study suggest the important role of CW systems in the treatment of winery wastewater and for their subsequent reuse in agriculture.


2020 ◽  
Vol 20 (8) ◽  
pp. 3318-3329
Author(s):  
Fernanda Lamede Ferreira de Jesus ◽  
Antonio Teixeira de Matos ◽  
Mateus Pimentel de Matos

Abstract The objective of this study was to evaluate the influence of stoloniferous and fasciculated root systems, of Tifton 85 and vetiver grass respectively, on pollutant removal for primary treatment of sewage in horizontal subsurface flow constructed wetlands (HSSF-CWs). For this, three HSSF-CWs measuring 4 m × 1 m × 0.25 m, filling with gneiss gravel # 0 (D60 of 7.0 mm and 48.4% porosity) as substrate, were used. One unit was cultivated with Tifton 85 grass (HSSFT-CW), one with vetiver grass (HSSFV-CW) and one remained uncultivated (HSSFC-CW) as a control. Sewage was applied at a flow rate of 0.53–0.80 m3 d−1, corresponding to an organic loading rate of approximately 350 kg ha−1 d−1 (biochemical oxygen demand – BOD), which resulted in a hydraulic retention time of 0.6–0.9 day. The HSSFV-CW was more efficient than the HSSFC-CW in removing dissolved solids (measured as electrical conductivity) and reducing the total suspended solids (TSS), BOD5, turbidity and sodium concentration, while the HSSFT-CW was not superior in any way. The results indicate that cultivation of vetiver grass provided increased efficiency for removing pollutants from sewage when compared with Tifton 85-grass, in the HSSF-CW.


Author(s):  
Mahmood Al Ramahi ◽  
Sándor Beszédes ◽  
Gábor Keszthelyi-Szabó

AbstractIndustrial wastewater is a growing environmental challenge due to its high concentrations of organics and its limited biological degradability. Up to date, however, no published work discussed industrial wastewater characterization, which is the focus of this study. Moreover, the effect of hydrothermal treatment on the chemical oxygen demand (COD) removal and the soluble chemical oxygen demand (SCOD) release was investigated in this work. Wastewater samples were collected from different industrial sites and characterized in order to determine their initial properties. It was summarized that the salinity of wastewater estimated by EC was relatively low, and its pH values were in the acceptable range. On the other hand, however, high values of sodium absorption ratio (SAR) were obtained in all samples post to hydrothermal treatment. Nonetheless, our results revealed higher SCOD release post to hydrothermal treatment suggesting better efficiency of COD removal obtained by this treatment technique.


Sign in / Sign up

Export Citation Format

Share Document