scholarly journals First investigations on removal of nitrazepam from water using biochar derived from macroalgae low-cost adsorbent: kinetics, isotherms and thermodynamics studies

Author(s):  
Mazen K. Nazal ◽  
Durga Rao ◽  
Nabeel Abuzaid

Abstract Emerging contaminants such as pharmaceutical compounds have potential hazards to the aquatic environment and human health. In this paper, the adsorptive removal of the drug Nitrazepam from water was investigated for the first time using biochar prepared from Sargassum macroalgae. The removal efficiency of Nitrazepam using 1 g/L of Sargassum macroalgae-derived biochar was 98% with a maximum adsorption capacity of 143.12 mg/g. Effects of solution pH, adsorbent mass, adsorbate concentration, contact time and temperature on the removal of Nitrazepam were investigated. Different adsorption isotherms and kinetics were also tested. It was found that the solution pH slightly influenced the removal efficiency. The adsorption data fit the Freundlich isotherm model and the adsorption process of Nitrazepam onto Sargassum macroalgae-derived biochar is spontaneous, endothermic and followed the pseudo-second-order kinetics. Based on this work, it was determined that the low-cost Sargassum macroalgae-derived biochar adsorbent could be a promising adsorbent to remove Nitrazepam from water effectively.

2012 ◽  
Vol 518-523 ◽  
pp. 369-375 ◽  
Author(s):  
Yue Hong Yang ◽  
Dun Tao Shu ◽  
Ting Dong Fu ◽  
Huai Yu Zhang

The purpose of this study was to investigate the adsorption of Cu(II) on phosphogypsum, a waste material from the manufacture of phosphoric acid by wet process. The removal capacity of phosphogypsum for Cu(II) ions was studied as a function of solution pH, contact time, adsorbent dosage and adsorbate concentration. Before batch adsorption study, phosphogypsum was pre-conditioned by calcine without water. The Langmuir and Freundlich theories were used to describe the Cu(II) adsorption process, and the Freundlich isotherm showed the best fit to the process. The adsorptions of Cu(II) followed pseudo-second-order kinetics. Maximum adsorption capacity of lime-preconditioned phosphogypsum was found to be 2.824 mg/g. The results showed that the phoshogypsum is a suitable adsorbent for the removal of Cu(II) ions from aqueous solutions.


2017 ◽  
Vol 19 (1) ◽  
pp. 107-114 ◽  

<p>In last decades the search for new low cost sorbents that have heavy metal ions binding capabilities is a hot topic in the field of clean-up technologies. In this study,&nbsp; wastes of&nbsp; Romanian silver tree (<em>Abies alba)</em> bark&nbsp; were explored for first time as green and economical sorbent for the removal of Cd(II) ions from aqueous solutions.&nbsp; The effect of various experimental parameters such as initial solution pH, sorbent dose, initial Cd(II) concentration, temperature and contact time has been investigated under batch conditions.&nbsp;</p> <p>The Langmuir and Freundlich models were used to describe the equilibrium isotherms and both models have been fitted very well. According to the evaluation using the Langmuir equation, the maximum sorption capacity of Cd (II) ions on <em>Abies alba</em> bark waste was found to be 11.98<br /> mg g<sup>-1</sup> at 293 K. The thermodynamic parameters showed that the process of Cd(II) sorption on silver fir tree bark was feasible, spontaneous and endothermic. Kinetic data were properly fitted with the pseudo–second order model. The obtained results strongly suggest that Romanian silver tree (<em>Abies alba)</em> bark is eligible as an efficient sorbent for the decontamination of toxic metals from wastewaters.</p>


2021 ◽  
pp. 1-12
Author(s):  
Raafia Najam ◽  
Syed Muzaffar Ali Andrabi

Sawdust of willow has been investigated as an adsorbent for the removal of Ni(II), and Cd(II) ions from aqueous solution. Since willow tree is widely grown in almost all parts of Kashmir, it can be a common most easily available, sustainable, low cost adsorbent for the treatment of wastewaters in this part of the world where growing industrialization is affecting water quality like elsewhere in the world. Therefore, it is worthwhile to investigate the potential of sawdust of willow tree as an adsorbent for the removal of Ni(II) and Cd(II) ions from aqueous solution as a first step. Batch experiments were conducted to study the effect of some parameters such as contact time, initial concentration of metal ions, solution pH and temperature. Langmuir and Freundlich models were employed for the mechanistic analysis of experimental data obtained. Results reveal that in our system adsorption follows the Langmuir isotherm. The maximum adsorption capacity of Ni(II) and Cd(II) were found to be 7.98 and 7.11 mg/g respectively at optimum conditions. The pseudo-first-order and pseudo-second-order models were employed for kinetic analysis of adsorption process. The adsorption process follows pseudo-second-order kinetics. The efficacy of the adsorbent in the treatment of effluent from fertilizer factory has been investigated and the results have been found encouraging.


Author(s):  
Thaisa Caroline Andrade Siqueira ◽  
Isabella Zanette da Silva ◽  
Andressa Jenifer Rubio ◽  
Rosângela Bergamasco ◽  
Francielli Gasparotto ◽  
...  

Adsorption in biomass has proven to be a cost-effective option for treatment of wastewater containing dyes and other pollutants, as it is a simple and low cost technique and does not require high initial investments. The present work aimed to study the adsorption of methylene blue dye (MB) using sugarcane bagasse (SCB). The biomass was characterized by scanning electron microscopy (SEM). Adsorption studies were conducted batchwise. Kinetics, adsorption isotherms, and thermodynamics were studied. The results showed that SCB presented a maximum adsorption capacity of 9.41 mg g−1 at 45 °C after 24 h of contact time. Adsorption kinetics data better fitted the pseudo-second order model, indicating a chemical process was involved. The Sips’s three-parameter isotherm model was better for adjusting the data obtained for the adsorption isotherms, indicating a heterogeneous adsorption process. The process showed to be endothermic, spontaneous, and feasible. Therefore, it was concluded that SCB presented as a potential biosorbent material for the treatment of MB-contaminated waters.


2015 ◽  
Vol 72 (9) ◽  
pp. 1505-1515 ◽  
Author(s):  
H. Asnaoui ◽  
A. Laaziri ◽  
M. Khalis

Batch experiments were conducted to study the adsorption of hazardous cadmium onto low-cost algae biomass in aqueous solution with respect to concentration of adsorbate, adsorbent dosage, contact time, solution pH and temperature. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of cadmium onto Ulva lactuca biomass. Experimental data were tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of Cd(II) followed well pseudo-second-order kinetics. Langmuir and Freundlich models were applied to describe the biosorption isotherm of the metal ions by Ulva lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of Ulva lactuca biomass for cadmium was found to be 3.02 mg/g at pH 5.60 min equilibrium time and 20 °C. The mean free energy which was calculated was 6.24 kJ/mol for Cd(II) biosorption, which shows that the adsorption is physical. The calculated thermodynamic parameters (ΔG0, ΔH0 and ΔS0) showed that the biosorption of Cd(II) onto Ulva lactuca biomass was feasible, spontaneous and exothermic under examined conditions. The results indicate that algae Ulva lactuca could be employed as a low-cost material for the removal of metal ions from aqueous solution.


2013 ◽  
Vol 67 (4) ◽  
pp. 559-567 ◽  
Author(s):  
Milos Kostic ◽  
Miljana Radovic ◽  
Jelena Mitrovic ◽  
Danijela Bojic ◽  
Dragan Milenkovic ◽  
...  

In present study a low cost biosorbent derived from Lagenaria vulgaris plant by xanthation, was tested for its ability to remove copper from aqueous solution. The effect of contact time, initial pH, initial concentration of copper(II) ions and adsorbent dosage on the removal efficiency were studied in a batch process mode. The optimal pH for investigated metal was 5. A dosage of 4 g dm-3 of xanthated Lagenaria vulgaris biosorbent (xLVB) was found to be effective for maximum uptake of copper(II). The kinetic of sorption of metal was fast, reaching at equilibrium in 50 min. The kinetic data were found to follow closely the pseudo-second-order model. The adsorption equilibrium was described well by the Langmuir isotherm model with maximum adsorption capacity of 23.18 mg g-1 copper(II) ions on xLVB. The presence of sulfur groups on xLVB were identified by FTIR spectroscopic study. Copper removal efficiency was achieved at 81.35% from copper plating industry wastevater.


2017 ◽  
pp. 307-314
Author(s):  
Vesna Vucurovic ◽  
Vladimir Puskas ◽  
Uros Miljic

A simple, low cost, and effective method for the removal of acridine orange (AO), a mutagenic cationic dye, from aqueous model solutions by adsorption onto dried sugar beet pulp (SBP) was evaluated in the present study. The AO removal was enhanced along with the increase of the initial solution pH and dye concentration. It was found that the adsorption process closely follows a pseudo-second-order chemisorption kinetics. The obtained equilibrium data obey both the Freundlich and Langmuir isotherm models. The SBP was proved to be very promising adsorbent for AO removal. Maximum adsorption capacity of the Langmuir monolayer of SBP for AO was found to be 5.37, 34.6, 89.62, 144.53 and 324.58 mg/g, at 25?C for the solution pH of 2, 4, 5, 6, and 8, respectively.


2020 ◽  
Vol 10 (10) ◽  
Author(s):  
Sandeep Police ◽  
Sukanta Maity ◽  
Dilip Kumar Chaudhary ◽  
Sanjay Kumar Sahu ◽  
A. Vinod Kumar

Abstract The groundwater samples were found to be contaminated with high concentrations of uranium (U) in Punjab state as well as in few other locations of India. U being chemically toxic can deteriorate health when ingested. Hence, there is a need to remove U from contaminated water using an efficient, cheap and user friendly method. A study was initiated to investigate the efficiency of low-cost adsorbents in removing U from water. Seven adsorbents were screened for U removal efficiency, among which fly ash (FA) and tea waste (TW) were found to have better removal efficiency. Solid–liquid contact time and solution pH were optimized to establish conditions for better U removal efficiency. The U adsorption on FA and TW followed pseudo-second-order kinetics with rate constant values 4.63 g/mg/min and 15.63 g/mg/min, respectively. FA and TW had the highest U removal capability at pH 6 and pH 4, respectively. The U sorption data were fitted with Freundlich and Dubinin–Radushkevich isotherm models. The U adsorption on FA and TW is found to be a physical process with mean free energy (E) values less than 8 kJ/mol. Theoretically calculated maximum adsorption capacity values indicate that FA is a better adsorbent as compared to TW, which has been further confirmed experimentally. The U adsorption on both the adsorbents has interference from Ca2+ and no interference from Fe3+ at tested U concentrations. It is also found that FA and TW are effective in decontaminating U from spiked real groundwater samples to below the WHO (Guidelines for drinking water quality, 4th ed, vol 1, World Health Organization, Geneva, 2011) limit.


2021 ◽  
Author(s):  
Ali H. Jawad ◽  
Rangabhashiyam S ◽  
Ahmed Saud Abdulhameed ◽  
Syed Shatir A. Syed-Hassan ◽  
Zeid A. ALOthman ◽  
...  

Abstract A new biocomposite magnetic crosslinked glutaraldehyde-chitosan/MgO/Fe3O4 (CTS-GL/MgO/Fe3O4) adsorbent was prepared and applied for the removal of reactive blue 19 (RB 19) synthetic textile dye. The prepared CTS-GL/MgO/Fe3O4 was subjected to the several instrumental characterizations such as XRD, FTIR, SEM-EDX, pH-potentiometric titration, and pHpzc analyses. The influence of the input adsorption parameters such as A: CTS-GL/MgO/Fe3O4 dosage, B: initial solution pH, C: process temperature, and D: contact time on RB 19 removal efficiency was statistically optimized using Box-Behnken design (BBD). The analysis of variance (ANOVA) indicates the presence of five significant statistical interactions between input adsorption parameters i.e. (AB, AC, AD, BC, and BD). The adsorption kinetic and equilibrium study reveals a good to the pseudo-second-order model, and multilayer adsorption as proven by Freundlich isotherm model, respectively. The maximum adsorption capacity of CTS-GL/MgO/Fe3O4 towards RB19 was found to be 193.2 mg/g at 45 ºC. This work highlights the development of feasible and recoverable magnetic biocompsite adsorbent with desirable adsorption capacity towards textile dyes with good separation ability by using an external magnetic field.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Sumanjit Kaur ◽  
Seema Rani ◽  
Rakesh Kumar Mahajan

The present work aims to investigate the removal of dye congo red from aqueous solutions by two low-cost biowaste adsorbents such as ground nut shells charcoal (GNC) and eichhornia charcoal (EC) under various experimental conditions. The effect of contact time, ionic strength, temperature, pH, dye concentration, and adsorbent dose on the removal of dye was studied. The kinetic experimental data were fitted to pseudo-first order, pseudo-second order, intraparticle diffusion, Elovich model, and Bangham’s model. Results imply that adsorption of congo red on these adsorbents nicely followed the second order kinetic model and maximum adsorption capacity was found to be 117.6 and 56.8 mg g−1for GNC and EC at 318 K, however it increases with increase in temperature for both adsorbents. Equilibrium isotherms were analyzed by Langmuir, Freundlich, Temkin, Dubinin and Radushkevich, and Generalized Isotherms. Freundlich isotherm described the isotherm data with high-correlation coefficients. The results of the present study substantiate that biowaste material GNC and EC are promising adsorbents for the removal of the dye congo red.


Sign in / Sign up

Export Citation Format

Share Document