scholarly journals Use of ceramic pot filter (CPF) technology under pressure in an in-line pumping system

2017 ◽  
Vol 18 (3) ◽  
pp. 843-852
Author(s):  
Travis D. Gardner ◽  
Joe D. Guggenberger

Abstract Ceramic pot filters (CPFs) are an effective point of use water treatment device in developing nations due to their low cost and effectiveness. CPFs are gravity fed, typically making water production a major limiting factor to a CPF's lifetime and acceptability. Directly connecting CPFs to in-line pumping systems or systems with an elevated storage tank would allow filter usage for constant water treatment at increased pressures, increasing the quantity of treated water. Ceramic disks were manufactured for testing in a specially designed housing apparatus. Filters of varying thicknesses and clay to sawdust mass ratios were manufactured to fit tightly. Flowrate and microbiological removal efficacy (logarithmic reduction value (LRV)) were determined over the testing period at various pressures. Flowrate values ranged from 2.44 to 9.04 L per hour, significantly higher than traditional CPF technology. LRVs ranged from 1.1 to 2.0, lower than traditional CPF technology but still effective at removing most Escherichia coli and total coliform bacteria. Filters proved effective at removing total and fecal coliforms at pressures less than 70 kilopascals. The optimum filter had a thickness of 3.2 cm and clay to sawdust ratio of 6:1 by mass. Filters proved to be ineffective if flowrates were above 5 L/h.

2018 ◽  
Vol 13 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Stephen Siwila ◽  
Isobel C Brink

Abstract The study examined two low-cost point-of-use water treatment systems developed in respect of bacterial and particulate removal when exposed to surface water for three months. Bacterial removal efficiency was estimated using E. coli and fecal coliforms, while particulate reduction efficiency was estimated by determining turbidity and total suspended solids (TSS). The systems investigated were the Gift of Water System (GWS) made in USA and the Drip Filter System (DFS) Model-JW-PD-1-70 made in South Africa. The study included seasonal water quality changes. Both systems recorded 100% bacterial removal throughout the study. Although results show that DFS was slightly better in terms of particulate reduction, both systems removed large proportions of particles from the water. On average TSS removals were 89% and 95%, while turbidity removals were 87% and 94%, by GWS and DFS respectively. The treated water from the two systems compared well with good quality tap water supplied to Stellenbosch University. The results show that both systems can treat the poor quality water used to meet the SANS 241 and WHO guidelines with respect to bacterial and suspended solids content.


2019 ◽  
Vol 17 (4) ◽  
pp. 568-586 ◽  
Author(s):  
Stephen Siwila ◽  
Isobel C. Brink

Abstract Three novel and two commercially available low-cost point-of-use (PoU) water treatment technologies were comparatively evaluated using a specialized comparison framework targeted at them. The comparison results and specialized framework have been discussed. The PoU systems were evaluated principally in terms of performance, flow rate and cost per volume of water treated (quantitatively), ease of use, potential acceptability and material availability (qualitatively) with main focus on rural and suburban settings. The three novel systems assessed were developed in an ongoing research project aimed at developing a multibarrier low-cost PoU water treatment system. The comparative evaluation and analysis revealed that the commercially available systems may often produce water free of pathogens (with an apparent 100% removal for Escherichia coli and fecal coliforms) but may not be affordable for application to the poorest groups in much of the developing world. The novel systems, which were principally constructed from local materials, were more affordable, can supply relatively safe water and can be constructed by users with minimal training. Overall, bacterial removal effectiveness, ease of use, flow rate, material availability, cost and acceptability aspects of water were identified as key to potential adoption and sustainability of the evaluated low-cost PoU systems.


Author(s):  
O. I. Okogwu ◽  
F. A. Elebe ◽  
G. N. Nwonumara

Abstract Most residents in developing countries suffer severe water shortage and often resort to self-supply. Unfortunately, some self-supply water sources contain disease-causing biological and chemical contaminants and require point-of-use (POU) treatment. However, recontamination and persistence of chemical contaminants occur, which defeats the aim of POU. This study aims to develop an affordable low technology system that effectively treats whole-house water sourced from borehole and rain without recontamination. Raw borehole water (RBW) was treated with KAl(SO4)2.12H2O (8.10 mg/L), Ca(OH)2 (68.21 mg/L) and NaOCl (1.875 mg/L) in two separate tanks and thereafter filtered through 5-micron and 0.5-micron carbon filters, and reverse osmosis system. The results showed that heterotrophic plate count (2,700 CFU/mL) and total coliform (378.00±21.25 MPN/100 mL) in RBW were reduce to zero, and total hardness was reduced by >83% after treatment and there was no recontamination. Chromium (0.05±0.002 mg/L), Cu (0.04±0.001 mg/L), Pb (0.09±0.001 mg/L), Fe (0.26±0.005 mg/L) and Mn (0.2±0.001 mg/L) in the RBW were reduced below detectable limits after treatment. The annual per capita cost of water treatment was estimated at N4,744.44 ($9.32) at per capita consumption of 100 L/day. Our technology shows exceptional promises in providing affordable and safe water to the entire household throughout the year.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2302
Author(s):  
Daniela A. Duran Romero ◽  
Maria Cristina de Almeida Silva ◽  
Beni J. M. Chaúque ◽  
Antônio D. Benetti

The number of people living without access to clean water can be reduced by the implementation of point-of-use (POU) water treatment. Among POU treatment systems, the domestic biosand filter (BSF) stands out as a viable technology. However, the performance of the BSF varies with the inflow water quality characteristics, especially turbidity. In some locations, people have no choice but to treat raw water that has turbidity above recommended levels for the technology. This study aimed to measure the efficiency with which the BSF removes microorganisms from well water and from fecal-contaminated water with turbidity levels of 3, 25, and 50 NTU. Turbidity was controlled by the addition of kaolin to water. Turbidity removal varied from 88% to 99%. Reductions in total coliform (TC) and Escherichia coli ranged from 0.54–2.01 and 1.2–2.2 log removal values (LRV), respectively. The BSF that received water with a higher level of turbidity showed the greatest reduction in the concentration of microorganisms. Additional testing with water contaminated with four bacterial pure cultures showed reductions between 2.7 and 3.6 LRV. A higher reduction in microorganisms was achieved after 30–35 days in operation. Despite the filter’s high efficiency, the filtrates still had some microorganisms, and a disinfection POU treatment could be added to increase water safety.


2019 ◽  
Vol 15 (1) ◽  
pp. 48-65 ◽  
Author(s):  
Stephen Siwila ◽  
Isobel C. Brink

Abstract A low-cost multi-barrier drinking water system incorporating geotextile fabric for pre-filtration, silver-coated ceramic granular media (SCCGM) for filtration and disinfection, granular activated carbon (GAC) as an adsorption media and a safe storage compartment for treated water has been developed and tested. The developed system offers a novel concept of point-of-use drinking water treatment in rural and suburban areas of developing countries. The system is primarily aimed at bacterial and aesthetic improvement and has been optimised to produce >99.99% E. coli and fecal coliforms removal. Although particular emphasis was placed on the elimination of bacteria, improvement of the acceptability aspects of water was also given high priority so that users are not motivated to use more appealing but potentially unsafe sources. This paper discusses key system features and contaminant removal performance. A system using SCCGM only was also tested alongside the multi-barrier system. Strengths and weaknesses of the system are also presented. Both the developed and SCCGM-only systems consistently provided >99.99% E. coli and fecal coliforms removal at an optimum flow of 2 L/h. The developed system significantly recorded improvements of aesthetic aspects (turbidity, color, taste and odor). Average turbidity removals were 99.2% and 90.2% by the multi-barrier and SCCGM-only systems respectively.


2020 ◽  
Vol 10 (4) ◽  
pp. 1012-1018
Author(s):  
T. M. Ngasala ◽  
S. J. Masten ◽  
C. Cohen ◽  
D. Ravitz ◽  
E. J. Mwita

Abstract This study was conducted in an agro-pastoral community in Northern Tanzania, where water sources are contaminated, and point-of-use water treatment is rarely used. The objectives of the study were to determine the quality of drinking water at the household level and to assess the perception and attitude towards the treatment methods that were introduced to community members. The three treatment methods evaluated were chlorine tablets, silver-infused ceramic tablets, and solar water disinfection (SODIS). These methods were selected due to their availability, ease of use, cost, and effectiveness in water with high levels of coliform bacteria. Each home within the study area was provided with one of three treatment methods. The use, performance, and acceptability of the new water treatment methods were assessed over a three-week period. Prior to the introduction of the methods, 40% of households reported that they treated water regularly. However, 80% of the household water samples tested positive for Escherichia coli. After introducing the new methods, 60% of households increased their water consumption, and all water samples tested negative for E. coli during the final week of testing. The work demonstrates the need to provide access to cost-effective household water treatment methods, especially in rural communities that lack access to potable water.


2020 ◽  
Vol 185 ◽  
pp. 105409 ◽  
Author(s):  
Nhamo Chaukura ◽  
Robert Chiworeso ◽  
Willis Gwenzi ◽  
Machawe M. Motsa ◽  
Wisdom Munzeiwa ◽  
...  

1993 ◽  
Vol 39 (10) ◽  
pp. 973-977 ◽  
Author(s):  
Allen N. Hagler ◽  
Carlos A. Rosa ◽  
Paula B. Morais ◽  
Leda C. Mendonça-Hagler ◽  
Georgia M. O. Franco ◽  
...  

Yeasts and coliform bacteria were isolated from water that accumulated in the central cups and adjacent leaf axilae of two bromeliads, Neoregelia cruenta of a coastal sand dune and Quesnelia quesneliana of a mangrove ecosystem near the city of Rio de Janeiro, Brazil. The mean total coliform counts were above 10 000 per 100 mL for waters of both plants, but the mean fecal coliform counts were only 74 per 100 mL for Q. quesneliana and mostly undetected in water from N. cruenta. Of 90 fecal coliform isolates, 51 were typical of Escherichia coli in colony morphology and indol, methyl red, Volges–Proskauer, and citrate (IMViC) tests. Seven representatives of the typical E. coli cultures were identified as this species, but the identifications of nine other coliform bacteria were mostly dubious. The yeast community of N. cruenta was typical of plant surfaces with basidiomycetous yeasts anamorphs, and the black yeast Aureobasidium pullulans was prevalent. Quesnelia quesneliana had a substantial proportion of ascomycetous yeasts and their anamorphs, including a probable new biotype of Saccharomyces unisporus. Our results suggested that the microbial communities in bromeliad waters are typically autochtonous and not contaminants.Key words: yeasts, fecal coliforms, bromeliad waters, mangrove, Restinga.


2014 ◽  
Vol 12 (3) ◽  
pp. 573-583 ◽  
Author(s):  
E. Roma ◽  
T. Bond ◽  
P. Jeffrey

Many scientific studies have suggested that point-of-use water treatment can improve water quality and reduce the risk of infectious diseases. Despite the ease of use and relatively low cost of such methods, experience shows the potential benefits derived from provision of such systems depend on recipients' acceptance of the technology and its sustained use. To date, few contributions have addressed the problem of user experience in the post-implementation phase. This can diagnose challenges, which undermine system longevity and its sustained use. A qualitative evaluation of two household water treatment systems, solar disinfection (SODIS) and chlorine tablets (Aquatabs), in three villages was conducted by using a diagnostic tool focusing on technology performance and experience. Cross-sectional surveys and in-depth interviews were used to investigate perceptions of involved stakeholders (users, implementers and local government). Results prove that economic and functional factors were significant in using SODIS, whilst perceptions of economic, taste and odour components were important in Aquatabs use. Conclusions relate to closing the gap between factors that technology implementers and users perceive as key to the sustained deployment of point-of-use disinfection technologies.


Sign in / Sign up

Export Citation Format

Share Document