Development of a new process for treatment of a pharmaceutical wastewater

1998 ◽  
Vol 37 (9) ◽  
pp. 251-258 ◽  
Author(s):  
M. Rosén ◽  
T. Welander ◽  
A. Löfqvist ◽  
J. Holmgren

In this study a process for biological treatment of toxic wastewater from a pharmaceutical company was developed. By simulations on a laboratory scale, the contribution of organic material and toxicity in wastewater from different sources was determined and the degradability of specific compounds were studied. The information obtained from these tests was used to improve the treatability of the wastewater at the sources. As an example a persistent organic phosphorous compound could be degraded after pre-treatment with chemical hydrolysis. By further simulations on a laboratory scale it was possible to screen through a large number of process configurations to determine the best working biological treatment. A combination of fungal and bacterial treatment was found to remove toxicity from the wastewater more than a conventional bacterial treatment. The results from the laboratory studies were confirmed in pilot tests. A full scale treatment plant, which design is based on the results from these studies are presently under construction.

Author(s):  
Pedro Cisterna ◽  
Patricia Arancibia

Fats and oils are the most common contaminants in wastewater and are usually discarded through physical processes. This paper studies its elimination through an environmentally friendly biological treatment, yielding good results on both laboratory scale and in the field. In this study a comparative evaluation of the biodegradation of fats and oils in two scenarios were developed in an activated sludge plant at laboratory scale, and a wastewater treatment plant. The full-scale values for some key parameters are compared, such as the oil concentration in the influent and effluent, mass loading and removal efficiency and biodegradation systems. Activated sludge plant at laboratory scale working on a mass load range from 0.2 to 0.8 (kg COD / day / kg MLSS) initially reaches levels of 75% biodegradation thereafter influent concentration is increased and thereby the mass load is increased in a range of working system under high load and biodegradation rates ranging from 71 to 64% are achieved. The actual system consists of a treatment plant wastewater with an aerobic digester for sludge treatment. Fats and oils are retained in a previous degreaser to biological treatment and subsequently sent to the aerobic sludge digester, constituting of thus on a single substrate, resembling an activated sludge plant with extended aeration mode, and levels of biodegradation in the range of 69 to 92%. From this work, we can say that the choice of biological treatment for fats and oils is feasible and adequate. Furthermore, the biomass presents great adaptability to the oil substrate, favored in this case for being the only source of carbon, therefore fats and oils should be removed using biological treatment, instead of the flotation procedure or at most using it as an intermediate process


1994 ◽  
Vol 29 (9) ◽  
pp. 205-212 ◽  
Author(s):  
B. Kasapgil ◽  
G. K. Anderson ◽  
O. Ince

Implementation of the EC Directive on Urban Wastewater Treatment has led to the introduction of more stringent discharge standards being imposed by the Regulating Agencies in the United Kingdom. It is for this reason that this investigation into the pre-treatment of a dairy wastewater prior to aerobic biological treatment was carried out. In order to upgrade the existing treatment plant at a local dairy a Dissolved Air Flotation (DAF) and an anaerobic digestion system as pre-treatment process were studied at pilot - scale. Results obtained from this study showed that the existing aerobic biological treatment plant failed to achieve both the present consent conditions and those required in 1995. It was shown that an anaerobic filter would enable the plant to meet the discharge standards proposed by the National Rivers Authority but due to the configuration of the land available for new works it is recommended that the existing aerobic biological filter be replaced by an activated sludge system. It is anticipated that such a system would reduce the final effluent COD to less than 125 mg/l.


2008 ◽  
Vol 58 (7) ◽  
pp. 1361-1369 ◽  
Author(s):  
R. Bayard ◽  
J. de Araujo Morais ◽  
M. Rouez ◽  
U. Fifi ◽  
F. Achour ◽  
...  

Mechanical and biological pre-treatment (MBT) of residual Municipal Solid Waste (MSW) is considered as a promising technical option prior to landfilling. The aim of MBT is to control the biological landfill activity to minimize biogas and leachate production. Laboratory-scale bioreactors were set up to study the behaviour of untreated and pre-treated residues. The bioreactors were designed to simulate the anaerobic condition of sanitary landfill. Initial water addition has been performed to ensure optimal condition of biological degradation. The incubation time was 400 days to achieve the biodegradation. Experiments have been carried out with untreated or treated waste collected from a mechanical-aerobic biological treatment plant located in middle south of France. Chemical and biological analyses have been performed to characterise the waste samples before and after the incubation. Results showed that a residual anaerobic activity does exist for the pre-treated waste when incubated in optimal moisture condition: biogas production does still exist even after a long period of aerobic hot fermentation and maturation.


2017 ◽  
Vol 120 (3) ◽  
pp. 303-322
Author(s):  
D. Pienaar ◽  
B.M. Guy ◽  
C. Pienaar ◽  
K.S. Viljoen

Abstract Mineralogical and textural variability of ores from different sources commonly leads to processing inefficiencies, particularly when a processing plant is designed to treat ore from a single source (i.e. ore of a relatively uniform composition). The bulk of the Witwatersrand ore in the Klerksdorp goldfield, processed at the AngloGold Ashanti Great Noligwa treatment plant, is derived from the Vaal Reef (>90%), with a comparatively small contribution obtained from the Crystalkop Reef (or C-Reef). Despite the uneven contribution, it is of critical importance to ensure that the processing parameters are optimized for the treatment of both the Vaal and C-Reefs. This paper serves to document the results of a geometallurgical study of the C-Reef at the Great Noligwa gold mine in the Klerksdorp goldfield of South Africa, with the primary aim of assessing the suitability of the processing parameters that are in use at the Great Noligwa plant. The paper also draws comparisons between the C-Reef and the Vaal Reef A-facies (Vaal Reef) and attempts to explain minor differences in the recovery of gold and uranium from these two sources. Three samples of the C-Reef were collected in-situ from the underground operations at Great Noligwa mine for mineralogical analyses and metallurgical tests. Laboratory-scale leach tests for gold (cyanide) and uranium (sulphuric acid) were carried out using dissolution conditions similar to that in use at the Great Noligwa plant, followed by further diagnostic leaching in the case of gold. The gold in the ore was found to be readily leachable with recoveries ranging from 95% to 97% (as opposed to 89% to 93% for the Vaal Reef). Additional recoveries were achieved in the presence of excess cyanide (96% to 98%). The recovery of uranium varied between 72% and 76% (as opposed to 30% to 64% for the Vaal Reef), which is substantially higher than predicted, given the amount of brannerite in the ore, which is generally regarded as refractory. Thus, the higher uranium recoveries from the C-Reef imply that a proportion of the uranium was recovered by the partial dissolution of brannerite. As the Vaal Reef contain high amounts of chlorite (3% to 8%), which is an important acid consumer, it is considered likely that this could have reduced the effectiveness of the H2SO4 leach in the case of the ore of the Vaal Reef. Since the gold and uranium recoveries from the C-Reef were higher than the recoveries from the Vaal Reef, the results demonstrate that the processing parameters used for treatment of the Vaal Reef are equally suited to the treatment of the C-Reef. Moreover, small processing modifications, such as increased milling and leach retention times, may well increase the recovery of gold (particularly when e.g. coarse gold, or unexposed gold, is present).


2011 ◽  
Vol 11 (1) ◽  
pp. 107-112 ◽  
Author(s):  
A. Grefte ◽  
M. Dignum ◽  
S. A. Baghoth ◽  
E. R. Cornelissen ◽  
L. C. Rietveld

To guarantee a good water quality at the consumer’s tap, natural organic matter (NOM) should be (partly) removed during drinking water treatment. The objective of this research is to measure the effect of NOM removal by ion exchange on the biological stability of drinking water. Experiments were performed in two lanes of the pilot plant of Weesperkarspel in the Netherlands. The lanes consisted of ozonation, softening, biological activated carbon filtration and slow sand filtration. Ion exchange in fluidized form was used as pre-treatment in one lane and removed 50% of the dissolved organic carbon (DOC); the other lane was used as reference. Compared to the reference lane, the assimilable organic carbon (AOC) concentration of the finished water in the lane pretreated by ion exchange was 61% lower. The biofilm formation rate of the finished water was decreased with 70% to 2.0 pg ATP/cm2.day. The achieved concentration of AOC and the values of the biofilm formation rate with ion exchange pre-treatment showed that the biological stability of drinking water can be improved by extending a treatment plant with ion exchange, especially when ozonation is involved as disinfection and oxidation step.


1986 ◽  
Vol 18 (9) ◽  
pp. 163-173
Author(s):  
R. Boll ◽  
R. Kayser

The Braunschweig wastewater land treatment system as the largest in Western Germany serves a population of about 270.000 and has an annual flow of around 22 Mio m3. The whole treatment process consists of three main components : a pre-treatment plant as an activated sludge process, a sprinkler irrigation area of 3.000 ha of farmland and an old sewage farm of 200 ha with surface flooding. This paper briefly summarizes the experiences with management and operation of the system, the treatment results with reference to environmental impact, development of agriculture and some financial aspects.


1994 ◽  
Vol 30 (5) ◽  
pp. 87-95 ◽  
Author(s):  
Susan E. Murcott ◽  
Donald R. F. Harleman

In the past decade, the development of polymers and new chemical technologies has opened the way to using low doses of chemicals in wastewater treatment. “Chemical upgrading” (CU) is defined in this paper as an application of these chemical technologies to upgrade overloaded treatment systems (typically consisting of conventional primary plus biological treatment) in Central and Eastern European (CEE) countries. Although some of the chemical treatment technologies are proven ones in North America, Scandinavia, and Germany, a host of factors, for example, the variations in composition and degree of pollution, the type of technologies in use, the type and mix of industrial and domestic sewage, and the amount of surface water, had meant that the viability of using CU in CEE countries was unknown. This report describes the first jar tests of CU conducted during the summer of 1993. The experiments show CU's ability to improve wastewater treatment plant performance and to potentially assist in the significant problem of overloaded treatment plants. Increased removal of BOD, TSS, and P in the primary stage of treatment is obtained at overflow rates above 1.5 m/h, using reasonably priced, local sources of metal salts in concentrations of 25 to 50 mg/l without polymers.


1994 ◽  
Vol 29 (12) ◽  
pp. 279-282 ◽  
Author(s):  
C. Güldner ◽  
W. Hegemann ◽  
N. Peschen ◽  
K. Sölter

The integration of the chemical precipitation unit which would inject a lime solution into a series of mechanical-biological processes, including nitrification/denitrification, and the sludge treatment are the subject of this project. The essential target is the large-scale reconstruction of a mechanical-biological sewage treatment plant with insufficient cleaning performance in the new German states and the adjustment of the precipitation stage to the unsteady inflow of sewage. First results indicate that the pre-treatment performance could be improved by ≅ 20% and the discharge of concentrations of COD, BOD, N and P could be reduced and homogenized. In addition, experiments on hydrolysis and acidifiability of the pre-treatment sludge have been carried out on a laboratory level with the object of making sources of carbon readily available for denitrification. In the course of the experiment, inhibition of fatty acid production by calcareous primary sludge could not be detected. The characteristics of the sludge, such as draining and thickening were considerably improved by the adding of lime.


Sign in / Sign up

Export Citation Format

Share Document