SANASA Capivari II – the first full-scale municipal membrane bioreactor in Latin America

2014 ◽  
Vol 70 (2) ◽  
pp. 272-278 ◽  
Author(s):  
R. Pagotto ◽  
R. Rossetto ◽  
R. L. P. Gasperi ◽  
J. P. Andrade ◽  
J. Trovati ◽  
...  

The macro region of Campinas (Brazil) is rapidly evolving with new housing developments and industries, creating the challenge of finding new ways to treat wastewater to a quality that can be reused in order to overcome water scarcity problems. To address this challenge, SANASA (a publicly owned water and wastewater concessionaire from Campinas) has recently constructed the ‘EPAR (Water Reuse Production Plant) Capivari II’ using the GE ZeeWeed 500D® ultrafiltration membrane system. This is the first large-scale membrane bioreactor (MBR) system in Latin America with biological tertiary treatment capability (nitrogen and phosphorus removal), being able to treat an average flow of 182 L/s in its first phase of construction. The filtration system is composed of three membrane trains with more than 36,000 m2 of total membrane filtration area. The membrane bioreactor (MBR) plant was commissioned in April 2012 and the permeate quality has exceeded expectations. Chemical oxygen demand (COD) removal rates are around and above 97% on a consistent basis, with biochemical oxygen demand (BOD5) and NH3 (ammonia) concentrations at very low levels, and turbidity lower than 0.3 nephelometric turbidity unit (NTU). Treated effluent is sent to a water reuse accumulation tank (from where will be distributed as reuse water), and the excess is discharged into the Capivari River.

2021 ◽  
Vol 83 (6) ◽  
pp. 1459-1469
Author(s):  
Yulan Gao ◽  
Jie Yang ◽  
Xinwei Song ◽  
Dongmei Shen ◽  
Wanfen Wang ◽  
...  

Abstract Several water treatment techniques have been combined using the sequencing batch reactor with the membrane bioreactor for addressing water pollution. However, cleaning of the membrane is dependent on the approach involved as well as the operating conditions. In the present study, the sequencing-batch membrane bioreactor was used to treat real mixed municipal wastewater. The pollutant removal and membrane filtration performances were examined. The results show that the average removal rates of chemical oxygen demand (COD), total nitrogen, NH3-N, total phosphorus, and turbidity were 90.75, 63.52, 92.85, 87.58, and 99.48%, respectively, when the system was in continuous operation for 95 days. The membrane had a significant effect on COD and turbidity removal and provided stable performances for nitrogen and phosphorus removal. By observing the appearance of the membrane modules before and after the cleaning operation, it was concluded that the deposited sludge and granular sediment on the membrane surface can be effectively removed by hydraulic cleaning. In addition, recovery of membrane filtration performance to 60% of that of a new membrane can be achieved. Furthermore, we found that different sequences and duration of cleaning have different effects on the recovery of membrane filtration performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Temesgen Oljira ◽  
Diriba Muleta ◽  
Mulissa Jida

Biological wastewater treatment is economically feasible and ecofriendly. This study was aimed at isolating bacteria from brewery wastes and evaluating their bioremediation potential as individual isolate and/or their consortium in reducing the pollutants of brewery effluents. A total of 40 bacterial isolates were recovered and of these the three best isolates were selected. The selected bacteria were identified to genus level by using morphological and biochemical characteristics. Accordingly, the isolates were identified as Aeromonas sp., Pseudomonas sp., and Bacillus sp. After 12 days of incubation, the removal efficiency of these three isolates and their combinations for biological oxygen demand and chemical oxygen demand varied from 73.55% to 94.85% and 76.78% to 93.25%, respectively. Total nitrogen and phosphorus removal was within the range of 54.43% to 77.21% and 41.80% to 78.18%, respectively. Total suspended solid, total solid, and total dissolved solids removal ranged from 66.74% to 90.3%, 54.69% to 88.5%, and 53.02% to 88.2%, respectively. The pH and electrical conductivity values ranged from 6.81 to 8.65 and 3.31 mS/cm to 3.67 mS/cm, respectively. The treated effluent increased Beta vulgaris seeds germination from 80% to 100%, with mean germination time of 3.1 to 5.2 days and seedlings length of 2.3 cm to 6.3 cm. Therefore, the development of this finding into a large scale offers an attractive technology for brewery waste treatment.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 513-520 ◽  
Author(s):  
O. Mizuno ◽  
H. Takagi ◽  
T. Noike

The biological sulfate removal in the acidogenic bioreactor with an ultrafiltration membrane system was investigated at 35°C. Sucrose was used as the sole organic substrate. The sulfate concentration in the substrate ranged from 0 to 600mgS·1−1. The chemostat reactor was operated to compare with the membrane bioreactor. The fouling phenomenon caused by FeS precipitate was observed at higher concentration of sulfate. However, it was possible to continuously operate the membrane bioreactor by cleaning the membrane. The efficiency of sulfate removal by sulfate reduction reached about 100% in the membrane bioreactor, and 55 to 87% of sulfide was removed from the permeate by the membrane filtration. The composition of the metabolite was remarkably changed by the change in sulfate concentration. When the sulfate concentration increased, acetate and 2-proponol significantly increased while n-butyrate and 3-pentanol decreased. The sulfate-reducing bacteria play the role as acetogenic bacteria consuming volatile fatty acids and alcohols as electron donors under sulfate-rich conditions. The results show that the acidogenesis and sulfate reduction simultaneously proceed in the membrane bioreactor.


2017 ◽  
Vol 30 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Thi Thu Nga Vu ◽  
Manon Montaner ◽  
Christelle Guigui

Wastewater effluents can be treated by an integrated membrane system combining membrane bioreactor (MBR) and reverse osmosis (RO) for effective removal of micropollutants in the field of high-quality water reuse. However, discharging the RO concentrate waste stream directly into the natural environment could lead to serious problems due to the toxic components contained in the concentrates (micropollutants, salts, organic matter). A possible solution could be the recirculation of RO concentrate waste to the MBR. However, such an operation should be studied in detail since the recirculation of non-biodegradable organic matter or high concentrations of salts and micropollutants could directly or indirectly contribute to MBR membrane fouling and modification of the biodegradation activity. In this context, the work reported here focused on the recirculation of such concentrates in an MBR, paying specific attention to MBR membrane fouling. Lab-scale experiments were performed on a continuous MBR-RO treatment line with RO concentrate recirculation. The main goal was to determine the recovery of the RO unit and of the global process that maintained good process performance in terms of biodegradation and MBR fouling. The results demonstrate that the impact of the toxic flow on activated sludge depends on the recovery of the RO step but the same trends were observed regardless of the organic matter and salt contents of the concentrates: the concentration of proteins increased slightly. Size-exclusion high performance liquid chromatography (HPLC-SEC) was employed to study the effects of RO concentrate on the production of protein-like soluble microbial products (SMPs) and demonstrated a significant peak of protein-like substances corresponding to 10-100 kDa and 100-1 000 kDa molecules in the supernatant. Thus a significant increase in the propensity for sludge fouling was observed, which could be attributed to the increased quantity of protein-like substances. Finally, the effect of the concentrate on sludge activity was studied and no significant effect was observed on biodegradation, indicating that the return of the concentrate to the MBR could be a good alternative.


2011 ◽  
Vol 64 (1) ◽  
pp. 214-219 ◽  
Author(s):  
Levent Gürel ◽  
Hanife Büyükgüngör

The use of a membrane bioreactor (MBR) for removal of organic substances and nutrients from slaughterhouse plant wastewater was investigated. The chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations of slaughterhouse wastewater were found to be approximately 571 mg O2/L, 102.5 mg/L, and 16.25 mg PO4-P/L, respectively. A submerged type membrane was used in the bioreactor. The removal efficiencies for COD, total organic carbon (TOC), TP and TN were found to be 97, 96, 65, 44% respectively. The COD value of wastewater was decreased to 16 mg/L (COD discharge standard for slaughterhouse plant wastewaters is 160 mg/L). TOC was decreased to 9 mg/L (TOC discharge standard for slaughterhouse plant wastewaters is 20 mg/L). Ammonium, and nitrate nitrogen concentrations of treated effluent were 0.100 mg NH4-N/L, and 80.521 mg NO3-N/L, respectively. Slaughterhouse wastewater was successfully treated with the MBR process.


2013 ◽  
Vol 67 (4) ◽  
pp. 915-924 ◽  
Author(s):  
David Batten ◽  
Tom Beer ◽  
George Freischmidt ◽  
Tim Grant ◽  
Kurt Liffman ◽  
...  

This paper projects a positive outcome for large-scale algal biofuel and energy production when wastewater treatment is the primary goal. Such a view arises partly from a recent change in emphasis in wastewater treatment technology, from simply oxidising the organic matter in the waste (i.e. removing the biological oxygen demand) to removing the nutrients – specifically nitrogen and phosphorus – which are the root cause of eutrophication of inland waterways and coastal zones. A growing need for nutrient removal greatly improves the prospects for using new algal ponds in wastewater treatment, since microalgae are particularly efficient in capturing and removing such nutrients. Using a spreadsheet model, four scenarios combining algae biomass production with the making of biodiesel, biogas and other products were assessed for two of Australia’s largest wastewater treatment plants. The results showed that super critical water reactors and anaerobic digesters could be attractive pathway options, the latter providing significant savings in greenhouse gas emissions. Combining anaerobic digestion with oil extraction and the internal economies derived from cheap land and recycling of water and nutrients on-site could allow algal oil to be produced for less than US$1 per litre.


2013 ◽  
Vol 4 (1) ◽  
pp. 25-33 ◽  
Author(s):  
S. Smith ◽  
G. Kim ◽  
L. Doan ◽  
H. Roh

With increasing water reuse applications and possible stringent regulations of phosphorus content in secondary and tertiary effluent discharge in Florida, USA, alternative technologies beyond conventional treatment processes require implementation to achieve low phosphorus (P) and nitrogen (N) concentrations. A pilot scale membrane bioreactor (MBR) system, operated in Florida, adopted the University of Cape Town (UCT) biological process for the treatment of domestic wastewater. The system operated for 280 days at a wastewater treatment facility with total hydraulic retention time (HRT) of 7 h and sludge retention time (SRT) of 20 days. Operating conditions were controlled to maintain specific dissolved oxygen (DO) concentrations in the reactors, operate at suitable return activated sludge (RAS) rates and to waste from the appropriate reactor. This process favored biological phosphorus removal and achieved 94.1% removal efficiency. Additionally, chemical oxygen demand (COD) and N removal were achieved at 93.9% and 86.6%, respectively. Membrane operation and maintenance did not affect the biological P removal performance but enhanced the process given the different operating requirements compared to that required with the conventional UCT process alone. Conclusively, the result of the pilot study demonstrated improvement in biological phosphorus removal. The UCT-MBR process tested achieved average effluent nitrogen and phosphorus concentrations of 5 mg/L as N and 0.3 mg/L as P.


2014 ◽  
Vol 9 (4) ◽  
pp. 464-474 ◽  
Author(s):  
N. Solomou ◽  
A. Stamatoglou ◽  
S. Malamis ◽  
E. Katsou ◽  
C. N. Costa ◽  
...  

An integrated system for the biological treatment of wastewater and biodegradable organic waste (BOW) was examined. The system consisted of a membrane bioreactor (MBR) for the treatment of sewage and an anaerobic digestion (AD) unit for the treatment of biowaste and sewage sludge. The ‘zero’ waste concept was the driving force for its implementation, targeting at the effective treatment of BOW, sewage sludge and wastewater and at energy and materials recovery. BOW and wastewater were fed to the integrated treatment system to produce treated effluent suitable for irrigation, energy and a stabilized solid to be used as soil improver. The system was operated for one year, from start-up to process optimization. After the start-up, five experimental stages were carried out for the MBR process and four phases for the AD process. Under optimized operating conditions, the MBR achieved 99% removal of ammonium nitrogen, 95% removal of nitrogen and 96% removal of chemical oxygen demand. The treated effluent satisfied the Cypriot water reuse standards. The energy balance showed that the AD required 5% of heat and 3.5% of electricity from the total energy of the produced biogas to maintain its operation. This resulted in 50% of excess heat and 31.5% of excess electricity.


Author(s):  
Izabela Major Barbosa ◽  
José Carlos Mierzwa ◽  
Ivanildo Hespanhol ◽  
Eduardo Lucas Subtil

This study evaluated the removal of nitrogen and organic matter in a membrane bioreactor system operating in a condition of simultaneous nitrification and denitrification controlled by intermittent aeration. A submerged-membrane system in a bioreactor was used in a pilot scale to treat domestic wastewater. The dissolved oxygen concentration was maintained between 0.5 and 0.8 mg L-1. The concentration of the mixed liquor suspended solids (MLSS) in the system ranged from 1 to 6 g L-1. The system efficiency was evaluated by the removal efficiency of organic matter, quantified by Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD5) and Total Organic Carbon (TOC). Nitrogen removal was assessed by quantifying Total Kjeldahl Nitrogen (TKN) and ammonia nitrogen. During the system start-up, the removal efficiencies of COD and NTK were around 90% and 80%, respectively. After the simultaneous nitrification and denitrification (SND) conditions were established, the removal efficiencies of COD and NTK were 70% and 99%, respectively. These results showed that sewage treatment with the membrane bioreactor (MBR) system, operating with simultaneous nitrification and denitrification conditions, was able to remove organic matter and promote nitrification and denitrification in a single reactor, producing a high-quality permeate.


2013 ◽  
Vol 67 (4) ◽  
pp. 780-788 ◽  
Author(s):  
J. Moreno ◽  
H. Monclús ◽  
M. Stefani ◽  
E. Cortada ◽  
J. Aumatell ◽  
...  

Membrane filtration has gradually gained acceptance as the preferred pre-treatment for reverse osmosis (RO). In this paper, an integrated membrane bioreactor (MBR)/RO system for wastewater reuse treating real sewage water has been evaluated and the RO fouling has been characterised. The MBR achieved low values of organic matter, total nitrogen, PO43−, total organic carbon, turbidity and conductivity. Filtration with two different RO commercial membranes was performed after the MBR pre-treatment and the same average fouling rate (0.08 bar day−1) was noted. These results gained from the characterisation of the high quality MBR/RO permeate show its potential for water reuse. Inorganic precipitation appears to be the predominant form of fouling in the RO membranes. Calcium phosphate and alumino-silicates were identified by a scanning electron microscope combined with an energy dispersive X-ray and polysaccharides, amide and aliphatic structures were detected with attenuated total reflection infrared microspectroscopy.


Sign in / Sign up

Export Citation Format

Share Document