Removal of Acid Black 1 and Basic Red 2 from aqueous solutions by electrocoagulation/Moringa oleifera seed adsorption coupling in a batch system

2015 ◽  
Vol 72 (2) ◽  
pp. 203-213 ◽  
Author(s):  
Helder Pereira de Carvalho ◽  
Jiguo Huang ◽  
Jiaheng Ni ◽  
Meixia Zhao ◽  
Xinyu Yang ◽  
...  

The removal of Acid Black 1 (AB1) and Basic Red 2 (BR2) from aqueous solutions via an electrocoagulation (EC)/Moringa oleifera seeds (MOS) adsorption coupling process by using aluminum and stainless steel electrode in a batch reactor is described in this study. The influences of the operational parameters, i.e. current density, MOS dosage, and dye initial concentration, on degree of color removal were studied, and the unit energy demand, the unit electrode material demand, and the charge loading were calculated and discussed. The amounts of adsorbent and energy consumption were considered as main criteria of process evaluation, and ideal conditions were chosen. The addition of an appropriate MOS dosage (0.6 g/L for AB1 and 5 g/L for BR2) resulted in faster decolorization of dyes especially at lower current densities and was simultaneously accompanied by a significant reduction in contact time compared to the conventional simple EC process. The coupling process achieved degree of removals above 99.3% and 94% for AB1 and BR2, respectively. The EC/MOS coupling technique could be recommended to replace the conventional simple EC because of its high degree of removal, short contact time, and low energy consumption.

2020 ◽  
Vol 82 (4) ◽  
pp. 683-694
Author(s):  
Kunkun Xiao ◽  
Dongmei Huang ◽  
Chunli Kang ◽  
Siyang Sun

Abstract The present work compared electrocoagulation (EC)/pecan shell (PS) coupling process with a simple electrocoagulation (EC) process for the removal of tetracyclines (TCs). The results indicated that the addition of appropriate PS could lead to the enhancement of the removal efficiency and decrease of operating time via synergistic influence, including conventional EC process, biomass materials adsorption, charge neutralization and coordination adsorption. The ideal condition for the coupling process was 2.5 mA/cm2 for current density and 3 cm for plate spacing. Based on the optimum condition, when the dosage of PS was 5 g/L, the initial concentration of tetracycline hydrochloride (TC), oxytetracycline hydrochloride (OTC) and chlortetracycline hydrochloride (CTC) was 250 mg/L, the removal rate of PS was 55.90%, 45.10% and 14.98% higher than those of EC process after 40 min treatment. In addition, compared to conventional EC process, the unit energy demand (UED) decreased by 49.62%, 53.2 4% and 26.35% and the unit electrode material demand (UEMD) decreased by 49.80%, 85.65% and 44.37%, respectively, which means more energy conservation and environmental protection.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2393
Author(s):  
Luming Zhou ◽  
Xinghua Xie ◽  
Shiqiang Wu

Water resources and energy constitute two broad categories of resources required for social and economic development. The water-energy nexus has become a focus of research in recent years. Although water resources are closely related to energy systems, the processes involved remain incompletely understood due to the diversity and complexity of energy types, processes, and consumption sectors. This study aimed to accurately calculate the energy demand of water resources and to identify an effective method of improving the energy utilization efficiency of water. The life cycle of water resources was divided into five stages based on the life cycle methodology: (1) extraction, (2) purification, (3) transportation, (4) utilization, (5) sewage treatment. The quantity and characteristics of energy consumed in each stage were studied, and an equation to calculate energy consumption for each stage was proposed. Using the city of Ordos in Northwest China as an example, energy consumption of water resources from 2013 to 2017 was analyzed. The results showed that from 2013 to 2017, energy consumption and per unit energy consumption of water resources in Ordos decreased by 33.3% and 30.6% from 1.62 × 108 kWh to 1.08 × 108 kWh and from 10.11 kWh·m−3 to 7.02 kWh·m−3, respectively. The majority of energy consumption over the entire life cycle of water resources occurred during the utilization stage at a proportion of total energy consumed of ~95%. Use of water for thermal power generation was identified as the single largest consumer of energy and, therefore, has the greatest potential for energy saving.


2016 ◽  
Vol 23 (7) ◽  
pp. 645-649 ◽  
Author(s):  
José H.E.S. Freitas ◽  
Keissy V. de Santana ◽  
Pollyanna M. da Silva ◽  
Maiara C. de Moura ◽  
Luana C.B.B. Coelho ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 217
Author(s):  
Marin Ugrina ◽  
Martin Gaberšek ◽  
Aleksandra Daković ◽  
Ivona Nuić

Sulfur-impregnated zeolite has been obtained from the natural zeolite clinoptilolite by chemical modification with Na2S at 150 °C. The purpose of zeolite impregnation was to enhance the sorption of Hg(II) from aqueous solutions. Chemical analysis, acid and basic properties determined by Bohem’s method, chemical behavior at different pHo values, zeta potential, cation-exchange capacity (CEC), specific surface area, X-ray powder diffraction (XRPD), scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), as well as thermogravimetry with derivative thermogravimetry (TG-DTG) were used for detailed comparative mineralogical and physico-chemical characterization of natural and sulfur-impregnated zeolites. Results revealed that the surface of the natural zeolite was successfully impregnated with sulfur species in the form of FeS and CaS. Chemical modification caused an increase in basicity and the net negative surface charge due to an increase in oxygen-containing functional groups as well as a decrease in specific surface area and crystallinity due to the formation of sulfur-containing clusters at the zeolite surface. The sorption of Hg(II) species onto the sulfur-impregnated zeolite was affected by the pH, solid/liquid ratio, initial Hg(II) concentration, and contact time. The optimal sorption conditions were determined as pH 2, a solid/liquid ratio of 10 g/L, and a contact time of 800 min. The maximum obtained sorption capacity of the sulfur-impregnated zeolite toward Hg(II) was 1.02 mmol/g. The sorption mechanism of Hg(II) onto the sulfur-impregnated zeolite involves electrostatic attraction, ion exchange, and surface complexation, accompanied by co-precipitation of Hg(II) in the form of HgS. It was found that sulfur-impregnation enhanced the sorption of Hg(II) by 3.6 times compared to the natural zeolite. The leaching test indicated the retention of Hg(II) in the zeolite structure over a wide pH range, making this sulfur-impregnated sorbent a promising material for the remediation of a mercury-polluted environment.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 173
Author(s):  
Abdeljalil Chougradi ◽  
François Zaviska ◽  
Ahmed Abed ◽  
Jérôme Harmand ◽  
Jamal-Eddine Jellal ◽  
...  

As world demand for clean water increases, reverse osmosis (RO) desalination has emerged as an attractive solution. Continuous RO is the most used desalination technology today. However, a new generation of configurations, working in unsteady-state feed concentration and pressure, have gained more attention recently, including the batch RO process. Our work presents a mathematical modeling for batch RO that offers the possibility of monitoring all variables of the process, including specific energy consumption, as a function of time and the recovery ratio. Validation is achieved by comparison with data from the experimental set-up and an existing model in the literature. Energetic comparison with continuous RO processes confirms that batch RO can be more energy efficient than can continuous RO, especially at a higher recovery ratio. It used, at recovery, 31% less energy for seawater and 19% less energy for brackish water. Modeling also proves that the batch RO process does not have to function under constant flux to deliver good energetic performance. In fact, under a linear pressure profile, batch RO can still deliver better energetic performance than can a continuous configuration. The parameters analysis shows that salinity, pump and energy recovery devices efficiencies are directly linked to the energy demand. While increasing feed volume has a limited effect after a certain volume due to dilution, it also shows, interestingly, a recovery ratio interval in which feed volume does not affect specific energy consumption.


2020 ◽  
Vol 11 (1) ◽  
pp. 267
Author(s):  
Han-Tang Lin ◽  
Yunn-Horng Guu ◽  
Wei-Hsuan Hsu

Global warming, climate change, and ever-increasing energy demand are among the pressing challenges currently facing humanity. Particularly, indoor air conditioning, a major source of energy consumption, requires immediate improvement to prevent energy crises. In this study, various airfoil profiles were applied to create a window-type convection device that entrains air to improve convection between indoor and outdoor airflows and adjust the indoor temperature. How the geometric structure of the convection device affects its air entrainment performance was investigated on the basis of various airfoil profiles and outlet slit sizes of the airflow multiplier. The airfoil profiles were designed according to the 4-digit series developed by the National Advisory Committee for Aeronautics. The results revealed that airfoil thickness, airfoil camber, and air outlet slit size affected the mass flow rate of the convection device. Overall, the mass flow rate at the outlet of the convection device was more than 10 times greater than at the inlet, demonstrating the potential of the device to improve air convection. To validate these simulated results, the wind-deflector plate was processed using the NACA4424 airfoil with a 1.2 mm slit, and various operating voltages were applied to the convection device to measure the resulting wind speeds and calculate the corresponding mass flow rates. The experimental and simulated results were similar, with a mean error of <7%, indicating that the airfoil-shaped wind-deflector plate substantially improved air entrainment of the convection device to the goal of reduced energy consumption and carbon emissions.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3966
Author(s):  
Jarosław Mamala ◽  
Michał Śmieja ◽  
Krzysztof Prażnowski

The market demand for vehicles with reduced energy consumption, as well as increasingly stringent standards limiting CO2 emissions, are the focus of a large number of research works undertaken in the analysis of the energy consumption of cars in real operating conditions. Taking into account the growing share of hybrid drive units on the automotive market, the aim of the article is to analyse the total unit energy consumption of a car operating in real road conditions, equipped with an advanced hybrid drive system of the PHEV (plug-in hybrid electric vehicles) type. In this paper, special attention has been paid to the total unit energy consumption of a car resulting from the cooperation of the two independent power units, internal combustion and electric. The results obtained for the individual drive units were presented in the form of a new unit index of the car, which allows us to compare the consumption of energy obtained from fuel with the use of electricity supported from the car’s batteries, during journeys in real road conditions. The presented research results indicate a several-fold increase in the total unit energy consumption of a car powered by an internal combustion engine compared to an electric car. The values of the total unit energy consumption of the car in real road conditions for the internal combustion drive are within the range 1.25–2.95 (J/(kg · m)) in relation to the electric drive 0.27–1.1 (J/(kg · m)) in terms of instantaneous values. In terms of average values, the appropriate values for only the combustion engine are 1.54 (J/(kg · m)) and for the electric drive only are 0.45 (J/(kg · m)) which results in the internal combustion engine values being 3.4 times higher than the electric values. It is the combustion of fuel that causes the greatest increase in energy supplied from the drive unit to the car’s propulsion system in the TTW (tank to wheels) system. At the same time this component is responsible for energy losses and CO2 emissions to the environment. The results were analysed to identify the differences between the actual life cycle energy consumption of the hybrid powertrain and the WLTP (Worldwide Harmonized Light-Duty Test Procedure) homologation cycle.


Author(s):  
Ying Lin ◽  
Xuesong Li ◽  
Martyn Twigg ◽  
William F Northrop

This work presents a novel non-premixed opposed-flow reactive volatilization reactor that simultaneously vaporizes and partially oxidizes low volatility liquid hydrocarbons at a short contact time (<12 ms). In the reactor,...


2012 ◽  
Vol 581-582 ◽  
pp. 552-555
Author(s):  
Cai Jun Liu

The influence of the pretreatment polyester short fiber on the mechanical process and the properties of the NR/ SBR compound was studied by using contrast method. The results showed that the maximum power and the unit energy consumption increased because of short fiber, and the temperature also enhanced. So the low rotate speed is better. When the composite were cured, it had much characteristic such as rapid vulcanization speed, short scorch time and vulcanization smooth period. But the mechanical properties were increased. In the end, the microscopic photo of composite with the scanning electronic micrograph was taken.


Sign in / Sign up

Export Citation Format

Share Document