scholarly journals Production of free radicals by the Co2+/Oxone system to carry out diclofenac degradation in aqueous medium

2018 ◽  
Vol 78 (10) ◽  
pp. 2131-2140 ◽  
Author(s):  
Oscar M. Rodríguez-Narváez ◽  
Oracio Serrano-Torres ◽  
Kazimierz Wrobel ◽  
Enric Brillas ◽  
Juan M. Peralta-Hernandez

Abstract This paper reports the degradation of a solution of 0.314 mM diclofenac (DCF), while using 5–15 mM Oxone as oxidizing agent with the catalytic action of 0.05–0.2 mM Co2+. The best performance was obtained for 10 mM Oxone and 0.2 mM Co2+, achieving the total DCF abatement and 77% removal of chemical oxygen demand after 30 min. Oxidizing of sulfate () and hydroxyl (•OH) radicals was formed by the Co2+/Oxone system. Oxone was firstly oxidized to persulfate ion that was then quickly converted into the above free radicals. For Oxone contents ≥10 mM, the decay of DCF concentration followed a second-order kinetic reaction, but the apparent rate constant changed with the Co2+ concentration used. High-performance liquid chromatography (HPLC) analysis of treated solutions showed the formation of some intermediates, whereas oxalic acid was identified as the prevalent final short-linear carboxylic acid by ion-exclusion HPLC.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Monirah Ataee ◽  
Abdolmajid Fadaei ◽  
Gashtasb Mardani ◽  
Morteza Sedehi

17β-Estradiol (E2) has a significant health risk to humans, even at the ng/L level, and is discharged to the aqueous environment through wastewater. Advanced oxidation processes were proposed as an efficient process for the removal of E2. In this study, a combination of ultraviolet-C (UV-C) and KMnO4 was applied for the removal of E2. Results have shown that the removal efficiency of E2 in pH 4 (acidic condition) was 93.80 ± 0.42%. But, removal efficiency in neutral (7) and alkaline (10) conditions was 78.3 ± 2.12% and 84 ± 0.71%, respectively. The effect of Fe+2, Ca+2, Mg+2, Mn+2, and Fe+3 ions (1 mg/L) was investigated in optimized pH (4). Mn+2, Fe+2, and Ca+2 ions enhanced the removal efficiency to 94.8 ± 0.84%, 95.55 ± 0.07%, and 94.7 ± 0.14%, respectively p > 0.05 , while Mg+2 and Fe+3 ions decreased the removal efficiency significantly to 76.15 ± 1% and 83.91 ± 0.3% p < 0.05 . The efficiency of E2 removal in the presence of 5 mg/L of PAC reduced significantly to 85 ± 4.24% p < 0.05 . Also, humic substances like humic acid, fulvic acid, and a combination of them could enhance the efficiency to 99.87 ± 0.01%, 99.9 ± 0.06%, and 99.93 ± 0.014%, respectively p > 0.05 . The result indicates that the rate of oxidation of E2 is related to the second exponent of the initial concentration of E2 for optimum pH and the presence of all ions. But, in the presence of humic substances, the first-order kinetic reaction was best applicable in describing oxidation of E2. Removal of chemical oxygen demand for E2 after 120 minutes’ of contact time at optimum pH (86 ± 4.2%) demonstrated mineralization of these compounds at acceptable levels. Results presented that the UV-C/KMnO4 process is efficient for the removal of hormones from the aqueous solution.


2018 ◽  
Vol 69 (3) ◽  
pp. 627-631 ◽  
Author(s):  
Viorica Ohriac (Popa) ◽  
Diana Cimpoesu ◽  
Adrian Florin Spac ◽  
Paul Nedelea ◽  
Voichita Lazureanu ◽  
...  

Pain is defined as a disagreeable sensory and emotional experience related to a tissue or potential lesion. Paracetamol (Acetaminophen) is the most used non-morphine analgesic. For the determination of paracetamol we developed and validated the high performance liquid chromatography (HPLC) analysis using a Dionex Ultimate 3000 liquid chromatograph equipped with a multidimensional detector. After determining the optimum conditions of analysis (80/20 water / acetonitrile mobile phase, flow rate 1.0 mL / min, detection wavelength 245 nm) we validated the method following the following parameters: linearity of response function, linearity of results, limit (LD = 0.66 mg / mL) and quantification limit (LQ = 2.00 mg / mL), and precision. The method of determining paracetamol by HPLC was applied to 30 samples of serum collected from patients who had pain and were treated with paracetamol.


1992 ◽  
Vol 25 (1) ◽  
pp. 1-8 ◽  
Author(s):  
P. Battistoni ◽  
G. Fava ◽  
A. Gatto

An Italian seafood factory processing frozen fish and fresh clams was investigated. Specific water consumption (SC) and pollutant emission factors (EF) are evaluated. Results evidence high SC values, in the range 18-74 1/Kg, due to defrost and extensive washing and cleaning practised; EFs appear high although not directly comparable with data reported by other authors. Two high-rate trickling filters, cross flow (CF) and vertical flow (VF), are examined over a two years period. Results suggest a pseudo half-order kinetic reaction with a superior performance of CF plastic media. From the elaboration of the experimental data a semiempirical correlation between specific surface removal (SSR) and operative parameters is obtained.


2021 ◽  
Vol 11 (14) ◽  
pp. 6641
Author(s):  
Kyung-Yuk Ko ◽  
Eun-Young Choi ◽  
Se-Hee Jeong ◽  
Sohwa Kim ◽  
Choon-Kil Lee ◽  
...  

Various synthetic dyes are artificially added to herbal medicines for the purpose of visual attraction. In order to monitor the illegal usage of synthetic dyes in herbal medication, a rapid and straightforward analysis method to determine synthetic dyes is required. The study aimed to develop and validate a high-performance liquid chromatography (HPLC) analysis to determine ten synthetic dyes in Hawthorn fruit, Cornus fruit, and Schisandra fruit. Ten synthetic dyes such as Tartrazine, Sunset yellow, Metanil yellow, Auramine O, Amaranth, Orange II, Acid red 73, Amaranth, New Coccine, Azorubine, and Erythrosine B, were extracted using 50 mM ammonium acetate in 70% MeOH; then separated by gradient elution with a mobile phase consisting of acetonitrile and 50 mM ammonium acetate in distilled water using a photodiode array detector (PDA) at 428 nm or 500 nm. In addition, this study established the LC-MS/MS method to confirm the existence of synthetic dyes in the positive sample solution. The HPLC analysis had good linearity (r2 > 0.999). The recoveries of this method ranged from 74.6~132.1%, and the relative standard deviation (RSD) values were less than 6.9%. Most of the samples fulfilled the acceptance criteria of the AOAC guideline. This study demonstrates that the HPLC analysis can be applied to determine ten synthetic dyes in herbal medication.


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal

This study presents a hybridized photocatalyst with adsorbate as a promising nanocomposite for photoremediation of wastewater. Photocatalytic degradation of bromophenol blue (BPB) in aqueous solution under UV-irradiation of wavelength 400 nm was carried out with TiO2 doped with activated carbon (A) and clinoptilolite (Z) via the co-precipitation technique. The physiochemical properties of the nanocomposite (A–TiO2 and Z–TiO2) and TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy. Results of the nanocomposite (A–TiO2 and Z–TiO2) efficiency was compared to that with the TiO2, which demonstrated their adsorption and synergistic effect for the removal of chemical oxygen demand (COD) and color from the wastewater. At an optimal load of 4 g, the photocatalytic degradation activity (Z–TiO2 > A–TiO2 > TiO2) was found favorably by the second-order kinetic model. Consequently, the Langmuir adsorption isotherms favored the nanocomposites (Z–TiO2 > A–TiO2), whereas that of the TiO2 fitted very well on the Freundlich isotherm approach. Z–TiO2 evidently exhibited a high photocatalytic efficacy of decomposition over 80% of BPB (COD) at reaction rate constant (k) and coefficient of determination (R2) values of 5.63 × 10−4 min−1 and 0.989, respectively.


1986 ◽  
Vol 49 (5) ◽  
pp. 383-388 ◽  
Author(s):  
PETER SPORNS ◽  
SUET KWAN ◽  
LAWRENCE A. ROTH

Oxytetracycline (OTC), also known commercially as Terramycin, was determined to be more stable in honey than in buffered aqueous solutions at similar pH values and temperatures. A rapid high performance liquid chromatography (HPLC) method was developed to detect and quantitate OTC using a 1:1 dilution (wt/wt) of honey samples in water. Using 355 nm as the wavelength of detection, amounts as low as 0.5 μg/ml could be detected in the above solution. The limits of detection were lowered considerably by a double extraction procedure.


Author(s):  
Olubukola H. Oyeniran ◽  
Adedayo O. Ademiluyi ◽  
Ganiyu Oboh

AbstractObjectivesRauvolfia vomitoria is a medicinal plant used traditionally in Africa in the management of several human diseases including psychosis. However, there is inadequate scientific information on the potency of the phenolic constituents of R. vomitoria leaf in the management of neurodegeneration. Therefore, this study characterized the phenolic constituents and investigated the effects of aqueous and methanolic extracts of R. vomitoria leaf on free radicals, Fe2+-induced lipid peroxidation, and critical enzymes linked to neurodegeneration in rat’s brain in vitro.MethodsThe polyphenols were evaluated by characterizing phenolic constituents using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The antioxidant properties were assessed through the extracts ability to reduce Fe3+ to Fe2+; inhibit ABTS, DPPH, and OH radicals and Fe2+-induced lipid peroxidation. The effects of the extracts on AChE and MAO were also evaluated.ResultsThe phenolic characterization of R. vomitoria leaf revealed that there were more flavonoids present. Both aqueous and methanolic extracts of R. vomitoria leaf had inhibitory effects with the methanolic extract having higher significant (p≤0.05) free radicals scavenging ability coupled with inhibition of monoamine oxidases. However, there was no significant (p≤0.05) difference obtained in the inhibition of lipid peroxidation and cholinesterases.ConclusionThis study suggests that the rich phenolic constituents of R. vomitoria leaf might contribute to the observed antioxidative and neuroprotective effects. The methanolic extract was more potent than the aqueous extract; therefore, extraction of R. vomitoria leaf with methanol could offer better health-promoting effects in neurodegenerative condition.


Amino Acids ◽  
2021 ◽  
Author(s):  
Grażyna Gałęzowska ◽  
Joanna Ratajczyk ◽  
Lidia Wolska

AbstractThe quantitation and qualification of amino acids are most commonly used in clinical and epidemiological studies, and provide an excellent way of monitoring compounds in human fluids which have not been monitored previously, to prevent some diseases. Because of this, it is not surprising that scientific interest in evaluating these compounds has resurfaced in recent years and has precipitated the development of a multitude of new analytical techniques. This review considers recent developments in HPLC analytics on the basis of publications from the last few years. It helps to update and systematize knowledge in this area. Particular attention is paid to the progress of analytical methods, pointing out the advantages and drawbacks of the various techniques used for the preparation, separation and determination of amino acids. Depending on the type of sample, the preparation conditions for HPLC analysis change. For this reason, the review has focused on three types of samples, namely urine, blood and cerebrospinal fluid. Despite time-consuming sample preparation before HPLC analysis, an additional derivatization technique should be used, depending on the detection technique used. There are proposals for columns that are specially modified for amino acid separation without derivatization, but the limit of detection of the substance is less beneficial. In view of the fact that amino acid analyses have been performed for years and new solutions may generate increased costs, it may turn out that older proposals are much more advantageous.


Author(s):  
Eman Hashim Khader ◽  
Thamer Jassim Mohammed ◽  
Nourollah Mirghaffari ◽  
Ali Dawood Salman ◽  
Tatjána Juzsakova ◽  
...  

AbstractThis paper studied the adsorption of chemical oxygen demand (COD), oil and turbidity of the produced water (PW) which accompanies the production and reconnaissance of oil after treating utilizing powdered activated carbon (PAC), clinoptilolite natural zeolite (CNZ) and synthetic zeolite type X (XSZ). Moreover, the paper deals with the comparison of pollutant removal over different adsorbents. Adsorption was executed in a batch adsorption system. The effects of adsorbent dosage, time, pH, oil concentration and temperature were studied in order to find the best operating conditions. The adsorption isotherm models of Langmuir, Freundlich and Temkin were investigated. Using pseudo-first-order and pseudo-second-order kinetic models, the kinetics of oil sorption and the shift in COD content on PAC and CNZ were investigated. At a PAC adsorbent dose of 0.25 g/100 mL, maximum oil removal efficiencies (99.57, 95.87 and 99.84 percent), COD and total petroleum hydrocarbon (TPH) were identified. Moreover, when zeolite X was used at a concentration of 0.25 g/100 mL, the highest turbidity removal efficiency (99.97%) was achieved. It is not dissimilar to what you would get with PAC (99.65 percent). In comparison with zeolites, the findings showed that adsorption over PAC is the most powerful method for removing organic contaminants from PW. In addition, recycling of the consumed adsorbents was carried out in this study to see whether the adsorbents could be reused. Chemical and thermal treatment will effectively regenerate and reuse powdered activated carbon and zeolites that have been eaten. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document