scholarly journals Performance and reliability comparison of French vertical flow treatment wetlands with other decentralized wastewater treatment technologies in tropical climates

2020 ◽  
Vol 82 (8) ◽  
pp. 1701-1709
Author(s):  
Rémi Lombard-Latune ◽  
Florent Leriquier ◽  
Chafatayne Oucacha ◽  
Lucas Pelus ◽  
Gérald Lacombe ◽  
...  

Abstract When implementing a sanitation system, the selection of treatment process can be difficult. Beyond removal efficiency and effluent concentrations, reliability should be taken into account. This study compares reliability of French vertical flow treatment wetlands (F-VFTW) with the four main decentralized wastewater treatment technologies in small communities in the French Overseas Territories (FOT). Analysis of 963 regulatory self-monitoring sampling campaigns performed on 213 wastewater treatment plants show that operational disruptions due to sludge loss and loss of nitrification are often reported for activated sludge technology; rotating biological contactors often suffer from weak settlement; facultative pond removal is limited by algae; and F-VFTW fulfills all the French regulatory objectives at a frequency of 90 to 95%. In addition, the data from this study are compared to a similar database from Brazil using a statistical approach (coefficient of reliability). Amongst the eight decentralized wastewater treatment technologies evaluated, F-VFTW appears to be the most appropriate for achieving the discharge standard with a reliability close to 95%. Its reliability to face both environmental (rainfall) and social (maintenance capacities) constraints is a key parameter.

2017 ◽  
Vol 75 (10) ◽  
pp. 2309-2315 ◽  
Author(s):  
Guenter Langergraber ◽  
Norbert Weissenbacher

In Austria, 1,840 wastewater treatment plants (WWTPs) with design size >50 population equivalent (PE) serve about 95% of the population. The remaining 5% of the population live in single houses and small settlements that require on site and decentralized wastewater treatment technologies. There is no common database on small WWTPs with design size <50 PE; thus data had to be collected from the Austrian federal states and compiled in a database. The total number of small WWTPs in Austria is about 28,700 comprising 1,300 WWTPs with design size 51–500 PE and 27,400 with design size <50 PE, respectively. The total number of treatment wetlands implemented in Austria is 5,450. Due to legal requirements (nitrification), only vertical flow wetlands are implemented in Austria. From the 5,450 treatment wetlands, about 100 are of design size larger than 50 PE and about 2,800 treatment wetlands have a design size of 5–10 PE. The peak of wetland implementation was in the years 2007–2011 with 2,200 implemented systems in 5 years. Since about 2000, about 30–40% of the new implemented small WWTPs are treatment wetlands.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 49-56
Author(s):  
E. D. Smith ◽  
R. J. Scholze

This paper presents a review of collected experience of one of the U.S. Corps of Engineers research laboratories in the area of small systems for wastewater treatment. Findings and experiences are presented for the use of package plants such as rotating biological contactors (RBCs), and remote site waste treatment at military installations and recreation areas.


2011 ◽  
Vol 1 (1) ◽  
pp. 37-56 ◽  
Author(s):  
Sílvia C. Oliveira ◽  
Marcos von Sperling

This article analyses the performance of 166 wastewater treatment plants operating in Brazil, comprising six different treatment processes: septic tank + anaerobic filter, facultative pond, anaerobic pond + facultative pond, activated sludge, UASB reactors alone, UASB reactors followed by post-treatment. The study evaluates and compares the observed effluent quality and the removal efficiencies in terms of BOD, COD, TSS, TN, TP and FC with typical values reported in the technical literature. In view of the large performance variability observed, the existence of a relationship between design/operational parameters and treatment performance was investigated. From the results obtained, no consistent relationship between loading rates and effluent quality was found. The influence of loading rates differed from plant to plant, and the effluent quality was dictated by several combined factors related to design and operation.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 215-218 ◽  
Author(s):  
B. Pérez-Uz ◽  
C. Franco ◽  
M. Martín-Cereceda ◽  
L. Arregui ◽  
I. Campos ◽  
...  

Ciliate communities were studied in the biofilms of three plants with rotating biological contactors (RBCs) over the period of one year. The aims of this study were: (i) to characterize ciliates to species level; (ii) to determine their abundance and spatial variation through the biological system; and (iii) to relate the spatial segregation and richness of ciliate species to plant performance. A number of species ranging from 33 to 67 were identified at the different plants. The overall best represented groups were peritrichs followed by scuticociliates (Las Matas), cyrtophorids (Boadilla) or hypotrichs (Camarma). Comparison of RBCs and activated sludge communities indicated that even though both were mainly constituted by peritrichs, differences in groups and species composition were observed.


1995 ◽  
Vol 32 (11) ◽  
pp. 85-95 ◽  
Author(s):  
Hassaan A. Abd El Gawad ◽  
J. H. C. Butter

In 1993 the Governorate of Fayoum completed its master plan for wastewater management. The master plan presents a staged implementation schedule for the development of wastewater facilities for the Governorate, covering needs up to the year 2020. The targets are ambitious: in order to meet sanitary health standards, nearly two million people (or 60% of the total population) living in 70 towns and villages would need to be served with sewerage systems. Providing all these areas with separate wastewater treatment plants would be impractical. The centralization of treatment at a limited number of treatment plants for clusters of towns and villages has advantages in terms of manageability, cost and environmental protection. In the master plan the configuration of these clusters is presented. For that purpose a stepped approach has been developed: an approach in which aspects such as construction and operation costs of the facilities, existing infrastructure, the geography of the governorate, environmental impact, alternative treatment technologies and phasing of implementation have been considered. An important element of the stepped approach is an analytical model with which - from financial point of view - the optimum size of a cluster can be estimated. Variables of the model are sizes of towns and villages, distances and treatment technologies. The output of the model is a set of general design criteria which has been applied to the specific situation in the governorate. The model has contributed to the establishment of the Master Plan for Wastewater: a plan now used by the Fayoum Sanitation Department as a framework to initiate new projects and to direct the activities of other agencies working in the sanitation sector in the governorate.


2000 ◽  
Vol 41 (1) ◽  
pp. 57-63 ◽  
Author(s):  
S. Vandaele ◽  
C. Thoeye ◽  
B. Van Eygen ◽  
G. De Gueldre

In Flanders (Belgium) an estimated 15% of the population will never be connected to a central wastewater treatment plant (WWTP). Small WWTPs can be a valuable option. Aquafin bases the decision to build SWWTPs on a drainage area study. To realise an accelerated construction the process choice is made accordingly to a standard matrix, which represents the different technologies in function of the size and the effluent consents. A pilot scale constructed two-stage reed bed is used to optimise the concept of the reed beds. The concept consists of a primary clarifier, two parallel vertical flow reed beds followed by a sub-surface flow reed bed. The removal efficiency of organic pollutants is high (COD: 89%, BOD: 98%). Phosphorus removal is high at the start-up but diminishes throughout the testing period (from 100% to 71% retention after 7 months). Nitrogen removal amounts to 53% on average. Nitrification is complete in summer. Denitrification appears to be the limiting factor. In autumn leakage of nitrogen is assumed. Removal efficiency of pathogens amounts to almost 99%. Clogging forms a substantial constraint of the vertical flow reed bed. Problems appear to be related with presettlement, feed interval and geotextile.


2015 ◽  
Vol 809-810 ◽  
pp. 1573-1578
Author(s):  
Casen Panaitescu ◽  
Monica Emanuela Stoica ◽  
Ciner Fehiman

Manufacture of wastewater treatment technologies is an important issue due to the complexity of design parameters and performance. Biological wastewater treatment is a process in which the intensity of oxygen transfer into water is an issue that has been extensively studied but yet insufficiently resolved. The present paper aims to describe an aeration system developed by the author in the laboratory by means of non-conventional technologies, and subsequently implemented in refinery wastewater treatment plants. The aeration system takes the form of modules, which are equipped with a new type of membrane. The analysis of the system performance revealed that oxygen transfer was 62%, specific adsorption of oxygen was 37 % and the specific oxygen transfer was 7%/m. The advantages of this new system are as follows: compared to existing technologies there is a higher rate of oxygen transfer into water; longer life; there are no dead zones in the basin as a result of their location; possibility of operating on separate sections.


Sign in / Sign up

Export Citation Format

Share Document