Nanomedicines to Treat Skin Pathologies with Natural Molecules

2019 ◽  
Vol 25 (21) ◽  
pp. 2323-2337 ◽  
Author(s):  
Elisabetta Esposito ◽  
Claudio Nastruzzi ◽  
Maddalena Sguizzato ◽  
Rita Cortesi

The skin and mucous membranes are subjected to many disorders and pathological conditions. Nature offers a wide range of molecules with antioxidant activity able to neutralize, at least in part, the formation of free radicals and therefore to counteract the phenomena of cellular aging. Since synthetic drugs for the treatment of skin diseases can induce resistance, it is particularly interesting to use compounds of plant origin, transporting them in pharmaceutical forms capable of controlling their release and absorption. This review provides an overview of new findings about the use of lipid-based nanosystems for the delivery of natural molecules useful on the topical treatment of skin disorders. Several natural molecules encapsulated in lipid nanosystems have been considered in the treatment of some skin pathologies or diseases. Particularly, the use of rosemary and eucalyptus essential oil, saffron derivatives, curcumin, eugenol, capsaicin, thymol and lycopene has been reported. The molecules have been alternatively encapsulated in viscous systems, such as the organogels, or in liquid systems, such as ethosomes, transferosomes, solid lipid nanoparticles and monoolein based dispersions thickened by inclusion in carbomer gels. The nanostructured forms have been in vitro and in vivo investigated for the treatment of skin disorders due to dehydration, inflammation, melanoma, wound healing, fungal infections or psoriasis. The data reported in the different studies have suggested that the cutaneous application of lipid nanosystems allows a deep interaction between lipid matrix and skin strata, promoting a prolonged release and efficacy of the loaded natural molecules. This review suggests that the application of natural molecules onto the skin by lipid-based nanosystems can provide numerous clinician benefits in dermatology and cosmetics.

In modern world, hyperlipidemia is the most common disorder mainly caused by lifestyle habits and the major cause of cardiovascular, coronary and atherosclerotic changes. Such disorder is characterized by abnormally elevated levels of any or all lipids or lipoproteins in the blood. A wide range of drugs are available for the treatment of hyperlipidemia, class of antihyperlipidemic drugs, but such drug-therapies are carried out with presence of various side effects. In the last decades, different in vitro and in vivo research have been conducted to confirm the therapeutic effects of various phytochemical agents that overcome the side effects caused by synthetic drugs. According to Ayurvedic recommendations and experimental studies, numerous phytochemical agents have been reported to possess different antihyperlipidemic properties. One of the most studied phytochemical agent - curcumin, herbal polyphenol and active ingredient which can be extracted from the powder rhizome of the plant Curcuma longa, has been reported to possess a wide range of pharmacological properties such as antimicrobial, antioxidative, antiinflammatory and anticancer property. Recent studies also suggests curcumin as potential lipid lowering candidate in treatment of hyperlipidemia. The aim of this review is to present and discuss phytochemistry, molecular mechanism of hypolipidemic activity of curcumin, demonstrating its importance as potential therapy for the treatment of hyperlipidemia.


2017 ◽  
Vol 4 (4) ◽  
pp. 161-165
Author(s):  
Twinkle Sunder Bansode ◽  
B K Salalkar

Despite considerable progress in the treatment of the diabetes with synthetic drugs, the search for effective, safe and inexpensive drugs is ongoing from herbs, since they offer a wide range of antidiabetic agents. Antidiabetic studies using in silico, in vitro and in vivo aspect of different medicinal plant products (Trigonella foenum-graecum, seeds; Syzygium cumini, seeds; Salvadora persica, leaves and Terminalia chebula, seeds) were reviewed. The objective of the study was to compare these medicinal plants for their hypoglycemic effect and phytochemical composition in order to find out most feasible and efficient antidiabetic agent. In this regard, the article is going to look at the phytochemical profile and the antihyperglycaemic properties and toxicity studies of the various fractions isolated from these plants. Studies claimed that all crude as well as partially purified fractions showed an antidiabetic effect hence are potent antidiabetic agents, but maximum effect observed in case of fraction isolated from Syzygium cumini and Salvadora persica.


Planta Medica ◽  
2021 ◽  
Author(s):  
Giulia Martinelli ◽  
Andrea Magnavacca ◽  
Marco Fumagalli ◽  
Mario DellʼAgli ◽  
Stefano Piazza ◽  
...  

AbstractThe use of Cannabis sativa is currently recognized to ease certain types of chronic pain, reduce chemotherapy-induced nausea, and improve anxiety. Nevertheless, few studies highlighted the therapeutic potential of C. sativa extracts and related phytocannabinoids for a variety of widespread skin disorders including acne, atopic dermatitis, psoriasis, pruritus, and pain. This review summarized the current evidence on the effects of phytocannabinoids at the cutaneous level through the collection of in vitro, in vivo, and clinical studies published on PubMed, Scopus, Embase, and Web of Science until October 2020. Phytocannabinoids have demonstrated potential anti-inflammatory, antioxidant, anti-aging, and anti-acne properties by various mechanisms involving either CB1/2-dependent and independent pathways. Not only classical immune cells, but also several skin-specific actors, such as keratinocytes, fibroblasts, melanocytes, and sebocytes, may represent a target for phytocannabinoids. Cannabidiol, the most investigated compound, revealed photoprotective, antioxidant, and anti-inflammatory mechanisms at the cutaneous level, while the possible impact on cell differentiation, especially in the case of psoriasis, would require further investigation. Animal models and pilot clinical studies supported the application of cannabidiol in inflammatory-based skin diseases. Also, one of the most promising applications of non-psychotropic phytocannabinoids is the treatment of seborrheic disorders, especially acne. In conclusion, the incomplete knowledge of the role of the endocannabinoid system in skin disorders emerged as an important limit for pharmacological investigations. Moreover, the limited studies conducted on C. sativa extracts suggested a higher potency than single phytocannabinoids, thus stimulating new research on phytocannabinoid interaction.


Author(s):  
Rasha Saad Suliman ◽  
Heyam Saad Ali ◽  
Abd Araheem Husayn ◽  
Babiker M. A. Elhaj ◽  
Rania Suliman

Superficial fungal infections represented 17% of skin diseases in patients attending the outpatient clinic of Khartoum Hospital of Skin and Venereal Diseases. The treatment of these infections usually involves the use of systemic drugs and/or topical well-tried preparations. All of the drugs carry a potential of adverse reactions, besides their relatively high cost.  Honey, which is a natural product of the honeybee, is believed to be active against fungi.  In this study, honey was used as topical treatment for six different clinical syndromes of superficial fungal infections. The study, which was carried out at the outpatient clinic of Khartoum Hospital of Skin and Venereal Diseases, included 360 patients (210 males and 150 females) with skin, hair and nail infections. Patients, diagnosed by clinical examination and direct microscopy (KOH), were given honey to be applied on their lesions twice daily.  Follow-up was made weekly by both clinical and laboratory evaluations.  A complementary follow-up visit after 4 weeks of completion of treatment was needed in order to trace any clinical or mycological changes.  Clinical and mycological cure showed some difference.  Two hundred and sixty patients (72.4%) showed clinical cure associated with hyphal clearance on direct microscopy.  Spores were not affected by honey, a direct cause of high relapse rate (42.3%).  It is concluded that honey had a therapeutic effect on skin and scalp fungal infections but nail infection were not affected.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Denis Okello ◽  
Jun Lee ◽  
Youngmin Kang

Inflammatory diseases are major health concerns affecting millions of people worldwide. Aspilia africana has been used for centuries by many African communities in the treatment of a wide range of health conditions, including inflammatory diseases, osteoporosis, rheumatic pains, and wounds. Analysis of the phytochemical composition of A. africana indicated that the plant is rich in a broad range of secondary metabolites, including flavonoids, alkaloids, tannins, saponins, terpenoids, sterols, phenolic compounds, and glycosides. This explains the efficacy of the plant in treating inflammation-related diseases, as well as several other health conditions affecting different African communities. The mechanisms of action of the anti-inflammatory phytochemical compounds in A. africana include inhibition of a number of physiological processes involved in the inflammatory process and synthesis or action of proinflammatory enzymes. The phytochemicals enhance anti-inflammatory biological responses such as inhibition of a number of chemical mediators including histamine, prostanoids and kinins, 5-lipoxygenase. and cyclooxygenase and activation of phosphodiesterase and transcriptase. Currently used anti-inflammatory medications are associated with several disadvantages such as drug toxicity and iatrogenic reactions, thereby complicating the treatment process. The adverse effects related to the use of these conventional synthetic drugs have been the driving force behind consideration of natural remedies, and efforts are being made toward the development of anti-inflammatory agents based on natural extracts. A. africana is rich in secondary metabolites, and its use as a traditional medicine for treating inflammatory diseases has been validated through in vitro and in vivo studies. Therefore, the plant could be further explored for potential development of novel anti-inflammatory therapeutics.


2021 ◽  
Author(s):  
Julien Gyamfi Agyemang ◽  
Cletus Adiyaga Wezena ◽  
Rahmat Alela-EMOMA Saaka ◽  
Abraham Babatuiamu Titigah ◽  
Samuel Sunyazi Sunwiale ◽  
...  

Background Skin diseases, particularly Tinea pedis are very rare in Ghana leading to low investment in dermatological services in the country and the African continent. Globally, Tinea pedis affects about 15% of the global population. Importantly, it is a major public health problem and socioeconomic issue. Currently, the most recommended treatment for Tinea pedis infection are polyenes, azoles, allylamines, and fluorocytosines. Although these drugs are effective, they do have adverse side effects and are limited in the clinical settings in developing countries especially Ghana. Method: Research papers were collected from Pubmed, Google scholar, chemical abstracts, and journal websites, reporting both in vitro and in vivo information on Tinea pedis. General information on Tinea pedis, the methods of infection, transfer, treatment options, and resistance were obtained after screening the articles. Many agents are involved in cases of Tinea pedis but are predominantly caused by Trichophyton rubrum which feeds on the keratinous layer of the topmost skin of the foot causing skin discoloration, itching, and maceration. The disease is influenced by individual lifestyle, environmental conditions, and individual factors such as age, sex, and host immunity and is prevented by the maintenance of good personal hygiene.Tinea pedis like other tinea infections are treated with both topical and systemic agents. The classes of medications used in the treatment of Tinea pedis are polyenes, azoles, allylamines, and fluorocytosines. Tinea pedis antifungal resistance development could be partly associated with incomplete medication and misuse of antifungal medications. Additionally, patients with serious underlying health conditions such as compromised immune systems like HIV/AIDS, diabetes, radiotherapy for cancer, and transplantation could complicate resistance. Conclusion: Although, fungal diseases do not cause epidemics the increasing rate of fungal infections and therefore Tinea pedis has to be checked and prevented. High budgets are made in the development of medications which mostly lose their effectiveness over time due to resistance development. Good personal hygiene is very effective but the available medications must be used appropriately for effective treatment and resistance avoidance. Infection prevention and control, tracking and data sharing, good and easily accessible antifungals, vaccines, and maintenance of personal and environmental hygiene are the topmost preventive measures against resistance development.


2019 ◽  
Vol 25 (21) ◽  
pp. 2338-2348 ◽  
Author(s):  
Hiba Natsheh ◽  
Elisa Vettorato ◽  
Elka Touitou

: Ethosomes are nanovesicular carriers for dermal administration. Phospholipids, ethanol at relatively high concentrations (up to 50%) and water are their main components. Ethosomes are what we call “soft vesicles” with fluid bilayers due to the presence of ethanol. The composition and structure of the vesicles augment their ability to entrap molecules with various physicochemical properties and deliver them to the deep strata of skin. Since their first design, ethosomal systems have been extensively investigated for a wide range of applications. : This review focuses on work carried out in vitro, in vivo in animal models and in humans in clinical studies, with ethosomal formulations containing natural active molecules for the treatment of skin disorders. Skin bacterial and fungal infections, skin inflammation, acne vulgaris, arthritis, and skin cancer are examples of disorders managed successfully by ethosomal systems. Furthermore, Ethosomes loaded with a number of naturally occurring compounds for cosmetic applications are also reported. The efficient treatments together with a good safety profile and lack of toxicity or irritation paved the way towards the development of new dermal therapies.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 291
Author(s):  
Mohammed Bhia ◽  
Mahzad Motallebi ◽  
Banafshe Abadi ◽  
Atefeh Zarepour ◽  
Miguel Pereira-Silva ◽  
...  

Naringenin (NRG) is a polyphenolic phytochemical belonging to the class of flavanones and is widely distributed in citrus fruits and some other fruits such as bergamot, tomatoes, cocoa, and cherries. NRG presents several interesting pharmacological properties, such as anti-cancer, anti-oxidant, and anti-inflammatory activities. However, the therapeutic potential of NRG is hampered due to its hydrophobic nature, which leads to poor bioavailability. Here, we review a wide range of nanocarriers that have been used as delivery systems for NRG, including polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanosuspensions, and nanoemulsions. These nanomedicine formulations of NRG have been applied as a potential treatment for several diseases, using a wide range of in vitro, ex vivo, and in vivo models and different routes of administration. From this review, it can be concluded that NRG is a potential therapeutic option for the treatment of various diseases such as cancer, neurological disorders, liver diseases, ocular disorders, inflammatory diseases, skin diseases, and diabetes when formulated in the appropriate nanocarriers.


2021 ◽  
Vol 14 (10) ◽  
pp. 962
Author(s):  
Terenzio Cosio ◽  
Roberta Gaziano ◽  
Guendalina Zuccari ◽  
Gaetana Costanza ◽  
Sandro Grelli ◽  
...  

Retinoids—a class of chemical compounds derived from vitamin A or chemically related to it—are used especially in dermatology, oncohematology and infectious diseases. It has been shown that retinoids—from their first generation—exert a potent antimicrobial activity against a wide range of pathogens, including bacteria, fungi and viruses. In this review, we summarize current evidence on retinoids’ efficacy as antifungal agents. Studies were identified by searching electronic databases (MEDLINE, EMBASE, PubMed, Cochrane, Trials.gov) and reference lists of respective articles from 1946 to today. Only articles published in the English language were included. A total of thirty-nine articles were found according to the criteria. In this regard, to date, In vitro and In vivo studies have demonstrated the efficacy of retinoids against a broad-spectrum of human opportunistic fungal pathogens, including yeast fungi that normally colonize the skin and mucosal surfaces of humans such as Candida spp., Rhodotorula mucilaginosa and Malassezia furfur, as well as environmental moulds such as Aspergillus spp., Fonsecae monofora and many species of dermatophytes associated with fungal infections both in humans and animals. Notwithstanding a lack of double-blind clinical trials, the efficacy, tolerability and safety profile of retinoids have been demonstrated against localized and systemic fungal infections.


Author(s):  
Abdelbagi Alfadil ◽  
Hamoud A. Alsamhan ◽  
Ahmed S. Ali ◽  
Huda M. Alkreathy ◽  
Mohammad W. Alrabia ◽  
...  

Aims: To explore the antifungal activity of 2,3-dimethylquinoxaline. Study Design: A preclinical study of a compound against 10 fungal species. Backgrounds: Severe fungal infections cause significant clinical problem and need more effort to search for new antifungals. Methodology: We evaluated the susceptibility of 2,3-dimethylquinoxaline in vitro against a wide range of pathogenic fungi, including six Candida species, two Aspergillus species, one Cryptococcus species, and one Trichophyton species. Also, we evaluated the susceptibility of 2,3-dimethylquinoxaline in vivo against oral candidiasis using a mice model. Results: The highest score of the minimum inhibitory concentration was 9 µg/ml against Cryptococcus neoformans. While, the lowest score was 1125 µg/ml against Candida tropicalis. The oral candidiasis in a mouse model was resolved using 2,3-dimethylquinoxaline 1% gel. Conclusion: The 2,3-Dimethyquinoxaline has interesting antifungal activity. Quinoxalines in general need to be further developed as a promising antifungal candidate.


Sign in / Sign up

Export Citation Format

Share Document