scholarly journals Phytotherapy: Herbal medicine in the management of Diabetes mellitus

2017 ◽  
Vol 4 (4) ◽  
pp. 161-165
Author(s):  
Twinkle Sunder Bansode ◽  
B K Salalkar

Despite considerable progress in the treatment of the diabetes with synthetic drugs, the search for effective, safe and inexpensive drugs is ongoing from herbs, since they offer a wide range of antidiabetic agents. Antidiabetic studies using in silico, in vitro and in vivo aspect of different medicinal plant products (Trigonella foenum-graecum, seeds; Syzygium cumini, seeds; Salvadora persica, leaves and Terminalia chebula, seeds) were reviewed. The objective of the study was to compare these medicinal plants for their hypoglycemic effect and phytochemical composition in order to find out most feasible and efficient antidiabetic agent. In this regard, the article is going to look at the phytochemical profile and the antihyperglycaemic properties and toxicity studies of the various fractions isolated from these plants. Studies claimed that all crude as well as partially purified fractions showed an antidiabetic effect hence are potent antidiabetic agents, but maximum effect observed in case of fraction isolated from Syzygium cumini and Salvadora persica.

In modern world, hyperlipidemia is the most common disorder mainly caused by lifestyle habits and the major cause of cardiovascular, coronary and atherosclerotic changes. Such disorder is characterized by abnormally elevated levels of any or all lipids or lipoproteins in the blood. A wide range of drugs are available for the treatment of hyperlipidemia, class of antihyperlipidemic drugs, but such drug-therapies are carried out with presence of various side effects. In the last decades, different in vitro and in vivo research have been conducted to confirm the therapeutic effects of various phytochemical agents that overcome the side effects caused by synthetic drugs. According to Ayurvedic recommendations and experimental studies, numerous phytochemical agents have been reported to possess different antihyperlipidemic properties. One of the most studied phytochemical agent - curcumin, herbal polyphenol and active ingredient which can be extracted from the powder rhizome of the plant Curcuma longa, has been reported to possess a wide range of pharmacological properties such as antimicrobial, antioxidative, antiinflammatory and anticancer property. Recent studies also suggests curcumin as potential lipid lowering candidate in treatment of hyperlipidemia. The aim of this review is to present and discuss phytochemistry, molecular mechanism of hypolipidemic activity of curcumin, demonstrating its importance as potential therapy for the treatment of hyperlipidemia.


2019 ◽  
Vol 25 (21) ◽  
pp. 2323-2337 ◽  
Author(s):  
Elisabetta Esposito ◽  
Claudio Nastruzzi ◽  
Maddalena Sguizzato ◽  
Rita Cortesi

The skin and mucous membranes are subjected to many disorders and pathological conditions. Nature offers a wide range of molecules with antioxidant activity able to neutralize, at least in part, the formation of free radicals and therefore to counteract the phenomena of cellular aging. Since synthetic drugs for the treatment of skin diseases can induce resistance, it is particularly interesting to use compounds of plant origin, transporting them in pharmaceutical forms capable of controlling their release and absorption. This review provides an overview of new findings about the use of lipid-based nanosystems for the delivery of natural molecules useful on the topical treatment of skin disorders. Several natural molecules encapsulated in lipid nanosystems have been considered in the treatment of some skin pathologies or diseases. Particularly, the use of rosemary and eucalyptus essential oil, saffron derivatives, curcumin, eugenol, capsaicin, thymol and lycopene has been reported. The molecules have been alternatively encapsulated in viscous systems, such as the organogels, or in liquid systems, such as ethosomes, transferosomes, solid lipid nanoparticles and monoolein based dispersions thickened by inclusion in carbomer gels. The nanostructured forms have been in vitro and in vivo investigated for the treatment of skin disorders due to dehydration, inflammation, melanoma, wound healing, fungal infections or psoriasis. The data reported in the different studies have suggested that the cutaneous application of lipid nanosystems allows a deep interaction between lipid matrix and skin strata, promoting a prolonged release and efficacy of the loaded natural molecules. This review suggests that the application of natural molecules onto the skin by lipid-based nanosystems can provide numerous clinician benefits in dermatology and cosmetics.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Nahla Ayoub ◽  
Nadia Badr ◽  
Saeed S. Al-Ghamdi ◽  
Safaa Alsanosi ◽  
Abdullah R. Alzahrani ◽  
...  

Salvadora persica L. (S. persica, Siwak) is an ethnic plant that is widely used for improving oral hygiene. This study aimed to provide a phytochemical profiling of S. persica ethyl acetate fraction (SPEAF) and to evaluate the healing activity of a muco-adhesive formula of the fraction against acetic acid-induced oral ulcers in rats. HPLC-ESI-QTOF-MS-MS analysis of SPEAF resulted in the tentative identification of 56 metabolites containing fatty acids (23%), urea derivatives (10.5%) and sulphur compounds (10%), in addition to several amides, polyphenols and organic acids (6.5%, 5% and 2%, respectively). For the first time, 19 compounds were identified from S. persica. In vitro and in vivo experiments indicated that the extract is non-toxic. SPEAF exhibited superior healing activities compared to both the negative and positive control groups on days 7 and 14 of tongue ulcer induction. This was confirmed by histopathological examinations of haematoxylin and eosin-stained (H&E) and Masson’s trichrome-stained tongue sections. Moreover, SPEAF showed potent anti-inflammatory activities, as evidenced by the inhibited expression of interleukin-6 (IL-6) and tumour necrosis alpha (TNF-α). Moreover, SPEAF exhibited potent antioxidant activity, as it prevented malondialdehyde (MDA) accumulation, reduced glutathione (GSH) depletion and superoxide dismutase (SOD) exhaustion. SPEAF significantly enhanced hydroxyproline tongue content and upregulated collagen type I alpha 1 (Col1A1) mRNA expression. SPEAF also improved angiogenesis, as shown by the increased mRNA expression of the angiopoietin-1 (Ang-1). In conclusion, S. persica has a wide range of secondary metabolites and ameliorates acetic acid-induced tongue ulcers in rats. This can be attributed, at least partly, to its anti-inflammatory, antioxidant, procollagen and angiogenic activities. These findings provide support and validity for the use of S. persica as a traditional and conventional treatment for oral disorders.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Denis Okello ◽  
Jun Lee ◽  
Youngmin Kang

Inflammatory diseases are major health concerns affecting millions of people worldwide. Aspilia africana has been used for centuries by many African communities in the treatment of a wide range of health conditions, including inflammatory diseases, osteoporosis, rheumatic pains, and wounds. Analysis of the phytochemical composition of A. africana indicated that the plant is rich in a broad range of secondary metabolites, including flavonoids, alkaloids, tannins, saponins, terpenoids, sterols, phenolic compounds, and glycosides. This explains the efficacy of the plant in treating inflammation-related diseases, as well as several other health conditions affecting different African communities. The mechanisms of action of the anti-inflammatory phytochemical compounds in A. africana include inhibition of a number of physiological processes involved in the inflammatory process and synthesis or action of proinflammatory enzymes. The phytochemicals enhance anti-inflammatory biological responses such as inhibition of a number of chemical mediators including histamine, prostanoids and kinins, 5-lipoxygenase. and cyclooxygenase and activation of phosphodiesterase and transcriptase. Currently used anti-inflammatory medications are associated with several disadvantages such as drug toxicity and iatrogenic reactions, thereby complicating the treatment process. The adverse effects related to the use of these conventional synthetic drugs have been the driving force behind consideration of natural remedies, and efforts are being made toward the development of anti-inflammatory agents based on natural extracts. A. africana is rich in secondary metabolites, and its use as a traditional medicine for treating inflammatory diseases has been validated through in vitro and in vivo studies. Therefore, the plant could be further explored for potential development of novel anti-inflammatory therapeutics.


1991 ◽  
Vol 30 (01) ◽  
pp. 35-39 ◽  
Author(s):  
H. S. Durak ◽  
M. Kitapgi ◽  
B. E. Caner ◽  
R. Senekowitsch ◽  
M. T. Ercan

Vitamin K4 was labelled with 99mTc with an efficiency higher than 97%. The compound was stable up to 24 h at room temperature, and its biodistribution in NMRI mice indicated its in vivo stability. Blood radioactivity levels were high over a wide range. 10% of the injected activity remained in blood after 24 h. Excretion was mostly via kidneys. Only the liver and kidneys concentrated appreciable amounts of radioactivity. Testis/soft tissue ratios were 1.4 and 1.57 at 6 and 24 h, respectively. Testis/blood ratios were lower than 1. In vitro studies with mouse blood indicated that 33.9 ±9.6% of the radioactivity was associated with RBCs; it was washed out almost completely with saline. Protein binding was 28.7 ±6.3% as determined by TCA precipitation. Blood clearance of 99mTc-l<4 in normal subjects showed a slow decrease of radioactivity, reaching a plateau after 16 h at 20% of the injected activity. In scintigraphic images in men the testes could be well visualized. The right/left testis ratio was 1.08 ±0.13. Testis/soft tissue and testis/blood activity ratios were highest at 3 h. These ratios were higher than those obtained with pertechnetate at 20 min post injection.99mTc-l<4 appears to be a promising radiopharmaceutical for the scintigraphic visualization of testes.


Author(s):  
Roohi Mohi-ud-din ◽  
Reyaz Hassan Mir ◽  
Prince Ahad Mir ◽  
Saeema Farooq ◽  
Syed Naiem Raza ◽  
...  

Background: Genus Berberis (family Berberidaceae), which contains about 650 species and 17 genera worldwide, has been used in folklore and various traditional medicine systems. Berberis Linn. is the most established group among genera with around 450-500 species across the world. This comprehensive review will not only help researchers for further evaluation but also provide substantial information for future exploitation of species to develop novel herbal formulations. Objective: The present review is focussed to summarize and collect the updated review of information of Genus Berberis species reported to date regarding their ethnomedicinal information, chemical constituents, traditional/folklore use, and reported pharmacological activities on more than 40 species of Berberis. Conclusion: A comprehensive survey of the literature reveals that various species of the genus possess various phytoconstituents mainly alkaloids, flavonoid based compounds isolated from different parts of a plant with a wide range of pharmacological activities. So far, many pharmacological activities like anti-cancer, anti-hyperlipidemic, hepatoprotective, immunomodulatory, anti-inflammatory both in vitro & in vivo and clinical study of different extracts/isolated compounds of different species of Berberis have been reported, proving their importance as a medicinal plant and claiming their traditional use.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


Author(s):  
Shangfei Wei ◽  
Tianming Zhao ◽  
Jie Wang ◽  
Xin Zhai

: Allostery is an efficient and particular regulatory mechanism to regulate protein functions. Different from conserved orthosteric sites, allosteric sites have distinctive functional mechanism to form the complex regulatory network. In drug discovery, kinase inhibitors targeting the allosteric pockets have received extensive attention for the advantages of high selectivity and low toxicity. The approval of trametinib as the first allosteric inhibitor validated that allosteric inhibitors could be used as effective therapeutic drugs for treatment of diseases. To date, a wide range of allosteric inhibitors have been identified. In this perspective, we outline different binding modes and potential advantages of allosteric inhibitors. In the meantime, the research processes of typical and novel allosteric inhibitors are described briefly in terms of structureactivity relationships, ligand-protein interactions and in vitro and in vivo activity. Additionally, challenges as well as opportunities are presented.


2019 ◽  
Vol 18 (26) ◽  
pp. 2209-2229 ◽  
Author(s):  
Hai Pham-The ◽  
Miguel Á. Cabrera-Pérez ◽  
Nguyen-Hai Nam ◽  
Juan A. Castillo-Garit ◽  
Bakhtiyor Rasulev ◽  
...  

One of the main goals of in silico Caco-2 cell permeability models is to identify those drug substances with high intestinal absorption in human (HIA). For more than a decade, several in silico Caco-2 models have been made, applying a wide range of modeling techniques; nevertheless, their capacity for intestinal absorption extrapolation is still doubtful. There are three main problems related to the modest capacity of obtained models, including the existence of inter- and/or intra-laboratory variability of recollected data, the influence of the metabolism mechanism, and the inconsistent in vitro-in vivo correlation (IVIVC) of Caco-2 cell permeability. This review paper intends to sum up the recent advances and limitations of current modeling approaches, and revealed some possible solutions to improve the applicability of in silico Caco-2 permeability models for absorption property profiling, taking into account the above-mentioned issues.


2019 ◽  
Vol 18 (14) ◽  
pp. 1983-1990 ◽  
Author(s):  
V. Lenin Maruthanila ◽  
Ramakrishnan Elancheran ◽  
Ajaikumar B. Kunnumakkar ◽  
Senthamaraikannan Kabilan ◽  
Jibon Kotoky

Emerging evidence present credible support in favour of the potential role of mahanine and girinimbine. Non-toxic herbal carbazole alkaloids occur in the edible part of Murraya koenigii, Micromelum minutum, M. zeylanicum, and M. euchrestiolia. Mahanine and girinimbine are the major potent compounds from these species. In fact, they interfered with tumour expansion and metastasis development through down-regulation of apoptotic and antiapoptotic protein, also involved in the stimulation of cell cycle arrest. Consequently, these compounds were well proven for the in-vitro and in vivo evaluation that could be developed as novel agents either alone or as an adjuvant to conventional therapeutics. Therefore, mahanine and girinimbine analogs have the potential to be the promising chemopreventive agents for the tumour recurrence and the treatment of human malignancies. In this review, an updated wide-range of pleiotropic anticancer and biological effects induction by mahanine and girinimbine against cancer cells were deeply summarized.


Sign in / Sign up

Export Citation Format

Share Document