Pentoxifylline and Oxypurinol: Potential Drugs to Prevent the “Cytokine Release (Storm) Syndrome” Caused by SARS-CoV-2?

2020 ◽  
Vol 26 (35) ◽  
pp. 4515-4521
Author(s):  
Francisco J. López-Iranzo ◽  
Ana M. López-Rodas ◽  
Luis Franco ◽  
Gerardo López-Rodas

Background: COVID-19, caused by SARS-CoV-2, is a potentially lethal, rapidly-expanding pandemic and many efforts are being carried out worldwide to understand and control the disease. COVID-19 patients may display a cytokine release syndrome, which causes severe lung inflammation, leading, in many instances, to death. Objective: This paper is intended to explore the possibilities of controlling the COVID-19-associated hyperinflammation by using licensed drugs with anti-inflammatory effects. Hypothesis: We have previously described that pentoxifylline alone, or in combination with oxypurinol, reduces the systemic inflammation caused by experimentally-induced pancreatitis in rats. Pentoxifylline is an inhibitor of TNF-α production and oxypurinol inhibits xanthine oxidase. TNF-α, in turn, activates other inflammatory genes such as Nos2, Icam or IL-6, which regulate migration and infiltration of neutrophils into the pulmonary interstitial tissue, causing injury to the lung parenchyma. In acute pancreatitis, the anti-inflammatory action of pentoxifylline seems to be mediated by the prevention of the rapid and presumably transient loss of PP2A activity. This may also occur in the hyperinflammatory -cytokine releasing phase- of SARS-CoV-2 infection. Therefore, it may be hypothesized that early treatment of COVID-19 patients with pentoxifylline, alone or in combination with oxypurinol, would prevent the potentially lethal acute respiratory distress syndrome. Conclusion: Pentoxifylline and oxypurinol are licensed drugs used for diseases other than COVID-19 and, therefore, phase I clinical trials would not be necessary for the administration to SARS-CoV-2- infected people. It would be worth investigating their potential effects against the hyperinflammatory response to SARS-CoV-2 infection.

Author(s):  
Akram A. Al–Salmi ◽  
Mai A. Alim A. Sattar Ahmad ◽  
Lateef M. Khan

Background: Our recent past studies accomplished the target to investigate the anti-inflammatory effect as well as toxicological profile of Commiphora opobalsamum (CO), with almost identical potency in comparison to the contemporary anti-inflammatory drugs. This inspired us to explore its mechanism of action to further strengthen its efficacy. Aim: To investigate the mechanism of anti-inflammatory action of CO by exploration of its correlation to its antioxidant activity as well as inhibitory effect on inflammatory mediators by interaction with MDA, NO, PGE2 and TNF-α. Methods: 10 weeks old male Swiss albino mice (30 to 40 g) were used. Carrageenan–induced paw edema method was used, pretreatment with CO alone in different doses and in combination with diclofenac was done prior to carrageenan administration, subsequently homogenate of the paw was used to quantify the levels of MDA, NO, PGE2 and TNF-α by using their specific assays. In addition, Histological examination of edema paw was performed to evaluate the anti-inflammatory effect of CO extract versus diclofenac and control investigating their impact on the inflammatory cell migration and edema formation. Results: CO extract in the dose of 500mg/kg demonstrated maximum reduction of MDA level; hence antioxidant activity of CO could be contributed to its anti-inflammatory effect. Furthermore, notable observation indicated that CO administration significantly suppress increment in NO level in response to carrageenan, unequivocally significant inhibition of PGE2 accumulation at the site of inflammation by the pretreatment of CO extract was observed in the dose of 500mg/kg (0.001). Finally in contrast, the CO extract in the dose of 500mg/kg significantly accomplished the reduction of TNF-α in the paw in comparison to the control group (p<0.05). Conclusion: In this study we have illustrated a pioneering perspective to elucidate the mechanism of anti- inflammatory and antioxidant action of methanolic extract of CO, attributed through suppression of MDA. NO, PGE2 and TNF-α at the site of inflammation.


Author(s):  
Gazanfar Ahmad ◽  
Reyaz Hassan ◽  
Neerupma Dhiman ◽  
Asif Ali

Background: Pentacyclic triterpenoids are a biologically active class of phytoconstituents with diverse pharmacological activity including anti-inflammatory action. Objective: In the current study, we isolated 3-Acetylmyricadiol, a pentacyclic triterpenoid, from the ethyl acetate bark-extract of Myrica esculenta and evaluated it for anti-inflammatory potential. Methods: The ethyl acetate bark-extract of the M. esculenta was subjected to column chromatography to isolate 3-Acetylmyricadiol. MTT assay was performed to check cell viability. The production of proinflammatory mediators like Nitric oxide, IL-6, TNF-α was observed after administration of 5, 10, 20 μM of 3-Acetylmyricadiol in LPS-activated Raw 246.7 macrophages by the reported methods. Results: MTT assay indicated more than 90% cell viability up to 20 μM of 3-Acetylmyricadiol. The administration of 3-Acetylmyricadiol inhibited the production of Nitric oxide, IL-6, TNF-α in a dose-dependent manner significantly in comparison to LPS treated cells. The maximum effect was observed at 20 μM of 3-Acetylmyricadiol which resulted in 52.37, 63.10, 55.37 % inhibition of Nitric oxide, IL-6, TNF-α respectively. Conclusion: Our study demonstrated the anti-inflammatory action of 3-Acetylmyricadiol and can serve as a potential candidate in the development of the clinically efficient anti-inflammatory molecule.


2018 ◽  
Vol 29 (6) ◽  
pp. 555-561 ◽  
Author(s):  
Francine Benetti ◽  
André Luiz Fraga Briso ◽  
Luciana Louzada Ferreira ◽  
Marina Carminatti ◽  
Larissa Álamo ◽  
...  

Abstract Bleaching gel containing hydrogen peroxide (H2O2) cause damages in pulp tissue. This study investigated the action of a topical anti-inflammatory, the Otosporin®, in rats’ bleached teeth with the null hypothesis of which the Otosporin® is no able to minimize the pulp inflammation that bleaching gel generates. The rat’s molars were divided into groups: BLE: bleached (35% H2O2 concentration /single application of 30 min); BLE-O: bleached followed by Otosporin® (10 min); and control: placebo gel. In the second day after dental bleaching, the rats were killed, and the jaws were processed for hematoxylin-eosin and immunohistochemistry analysis for tumor necrosis factor alpha (TNF-α), interleukin (IL)-6 and IL-17. The data collected were subjected to Kruskal-Wallis and Dunn statistical tests with at a 5% level of significance (p<0.05). The BLE group had moderate to strong inflammation in the occlusal third of the coronary pulp, with necrotic areas; and BLE-O, mild inflammation (p<0.05). There was a significant difference in the occlusal and middle thirds of the coronary pulp between the BLE with BLE-O and control groups (p<0.05). There was no difference in the cervical third (p>0.05). The BLE group had a high immunoexpression of TNF-α than BLE-O and control groups (p<0.05), with moderate and mild immunoexpression, respectively. Regarding IL-6 and IL-17, the BLE group had higher immunoexpression than control (p<0.05); the BLE-O was similar to the control (p>0.05). The topical anti-inflammatory Otosporin® can reduce pulp inflammation after dental bleaching in the rat teeth.


2019 ◽  
Vol 316 (3) ◽  
pp. R235-R242 ◽  
Author(s):  
Davide Martelli ◽  
David G. S. Farmer ◽  
Michael J. McKinley ◽  
Song T. Yao ◽  
Robin M. McAllen

The splanchnic anti-inflammatory pathway has been proposed as the efferent arm of the inflammatory reflex. Although much evidence points to the spleen as the principal target organ where sympathetic nerves inhibit immune function, a systematic study to locate the target organ(s) of the splanchnic anti-inflammatory pathway has not yet been made. In anesthetized rats made endotoxemic with lipopolysaccharide (LPS, 60 µg/kg iv), plasma levels of tumor necrosis factor-α (TNF-α) were measured in animals with cut (SplancX) or sham-cut (Sham) splanchnic nerves. We confirm here that disengagement of the splanchnic anti-inflammatory pathway in SplancX rats (17.01 ± 0.95 ng/ml, mean ± SE) strongly enhances LPS-induced plasma TNF-α levels compared with Sham rats (3.76 ± 0.95 ng/ml). In paired experiments, the responses of SplancX and Sham animals were compared after the single or combined removal of organs innervated by the splanchnic nerves. Removal of target organ(s) where the splanchnic nerves inhibit systemic inflammation should abolish any difference in LPS-induced plasma TNF-α levels between Sham and SplancX rats. Any secondary effects of extirpating organs should apply to both groups. Surprisingly, removal of the spleen and/or the adrenal glands did not prevent the reflex splanchnic anti-inflammatory action nor did the following removals: spleen + adrenals + intestine; spleen + intestine + stomach and pancreas; or spleen + intestine + stomach and pancreas + liver. Only when spleen, adrenals, intestine, stomach, pancreas, and liver were all removed did the difference between SplancX and Sham animals disappear. We conclude that the reflex anti-inflammatory action of the splanchnic nerves is distributed widely across abdominal organs.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4564
Author(s):  
Louis P. Sandjo ◽  
Marcus V. P. dos Santos Nascimento ◽  
Milene de H. Moraes ◽  
Luiza Manaut Rodrigues ◽  
Eduardo M. Dalmarco ◽  
...  

Banana inflorescences are a byproduct of banana cultivation consumed in various regions of Brazil as a non-conventional food. This byproduct represents an alternative food supply that can contribute to the resolution of nutritional problems and hunger. This product is also used in Asia as a traditional remedy for the treatment of various illnesses such as bronchitis and dysentery. However, there is a lack of chemical and pharmacological data to support its consumption as a functional food. Therefore, this work aimed to study the anti-inflammatory action of Musa acuminata blossom by quantifying the cytokine levels (NOx, IL-1β, TNF-α, and IL-6) in peritoneal neutrophils, and to study its antiparasitic activities using the intracellular forms of T. cruzi, L. amazonensis, and L. infantum. This work also aimed to establish the chemical profile of the inflorescence using UPLC-ESI-MS analysis. Flowers and the crude bract extracts were partitioned in dichloromethane and n-butanol to afford four fractions (FDCM, FNBU, BDCM, and BNBU). FDCM showed moderate trypanocidal activity and promising anti-inflammatory properties by inhibiting IL-1β, TNF-α, and IL-6. BDCM significantly inhibited the secretion of TNF-α, while BNBU was active against IL-6 and NOx. LCMS data of these fractions revealed an unprecedented presence of arylpropanoid sucroses alongside flavonoids, triterpenes, benzofurans, stilbenes, and iridoids. The obtained results revealed that banana inflorescences could be used as an anti-inflammatory food ingredient to control inflammatory diseases.


1997 ◽  
Vol 87 (10) ◽  
pp. 460-465 ◽  
Author(s):  
JW Brook ◽  
A Boike ◽  
RL Zema ◽  
M Weaver ◽  
P Postak

Locally injected steroids are used to treat inflammatory conditions, in spite of the complications associated with their use. Ketorolac tromethamine, an injectable nonsteroidal anti-inflammatory drug, has not previously been evaluated for treatment of musculoskeletal inflammatory conditions via local administration. Eighty Achilles tendons of rabbits were traumatized in a controlled fashion. At the time of trauma, a single dose of ketorolac (1, 3, or 5 mg/kg) or normal saline was administered peritendinously. Three days later, the tendons were harvested and examined histologically to evaluate the degree of inflammation present in the tissue. No statistically significant difference was found between the experimental and control groups. The authors conclude that locally injected ketorolac does not prevent the onset of an inflammatory process.


2017 ◽  
Vol 95 (9) ◽  
pp. 1030-1038 ◽  
Author(s):  
Haining Zhang ◽  
Yanhua He ◽  
Guiping Zhang ◽  
Xiaobin Li ◽  
Suikai Yan ◽  
...  

We previously suggested that endogenous glucocorticoids (GCs) may inhibit myocardial inflammation induced by lipopolysaccharide (LPS) in vivo. However, the possible cellular and molecular mechanisms were poorly understood. In this study, we investigated the role of physiological concentration of GCs in inflammation induced by LPS in cardiac fibroblasts and explored the possible mechanisms. The results showed that hydrocortisone at the dose of 127 ng/mL (equivalent to endogenous basal level of GCs) inhibited LPS (100 ng/mL)-induced productions of TNF-α and IL-1β in cardiac fibroblasts. Xanthine oxidase/xanthine (XO/X) system impaired the anti-inflammatory action of GCs through downregulating HDAC2 activity and expression. Knockdown of HDAC2 restrained the anti-inflammatory effects of physiological level of hydrocortisone, and blunted the ability of XO/X system to downregulate the inhibitory action of physiological level of hydrocortisone on cytokines. These results suggested that HDAC2 was required by the physiological concentration of GC to inhibit inflammatory response. The dysfunction of HDAC2 induced by oxidative stress might be account for GC resistance and chronic inflammatory disorders during the cardiac diseases.


2010 ◽  
Vol 108 (4) ◽  
pp. 845-851 ◽  
Author(s):  
Clarissa B. Magalhães ◽  
Douglas R. Riva ◽  
Leonardo J. DePaula ◽  
Aline Brando-Lima ◽  
Vera Lúcia G. Koatz ◽  
...  

Eugenol, a methoxyphenol component of clove oil, suppresses cyclooxygenase-2 expression, while eugenol dimers prevent nuclear factor-κB (NF-κB) activation and inflammatory cytokine expression in lipopolysaccharide-stimulated macrophages. Our aim was to examine the in vivo anti-inflammatory effects of eugenol. BALB/c mice were divided into four groups. Mice received saline [0.05 ml intratracheally (it), control (Ctrl) and eugenol (Eug) groups] or Escherichia coli LPS (10 μg it, LPS and LPSEug groups). After 6 h, mice received saline (0.2 ml ip, Ctrl and LPS groups) or eugenol (160 mg/kg ip, Eug and LPSEug groups). Twenty-four hours after LPS injection, pulmonary resistive (ΔP1) and viscoelastic (ΔP2) pressures, static elastance (Est), and viscoelastic component of elastance (ΔE) were measured. Lungs were prepared for histology. In parallel mice, bronchoalveolar lavage fluid was collected 24 h after LPS injection. TNF-α was determined by ELISA. Lung tissue expression of NF-κB was determined by EMSA. ΔP1, ΔP2, Est, and ΔE were significantly higher in the LPS group than in the other groups. LPS mice also showed significantly more alveolar collapse, collagen fibers, and neutrophil influx and higher TNF-α levels and NF-κB expression than the other groups. Eugenol treatment reduced LPS-induced lung inflammation, improving lung function. Our results suggest that eugenol exhibits in vivo anti-inflammatory action in LPS-induced lung injury.


2021 ◽  
Vol 22 (15) ◽  
pp. 8158
Author(s):  
Fatin Jannus ◽  
Marta Medina-O’Donnell ◽  
Veronika E. Neubrand ◽  
Milagros Marín ◽  
Maria J. Saez-Lara ◽  
...  

Recent evidence has shown that inflammation can contribute to all tumorigenic states. We have investigated the anti-inflammatory effects of a diamine-PEGylated derivative of oleanolic acid (OADP), in vitro and in vivo with inflammation models. In addition, we have determined the sub-cytotoxic concentrations for anti-inflammatory assays of OADP in RAW 264.7 cells. The inflammatory process began with incubation with lipopolysaccharide (LPS). Nitric oxide production levels were also determined, exceeding 75% inhibition of NO for a concentration of 1 µg/mL of OADP. Cell-cycle analysis showed a reversal of the arrest in the G0/G1 phase in LPS-stimulated RAW 264.7 cells. Furthermore, through Western blot analysis, we have determined the probable molecular mechanism activated by OADP; the inhibition of the expression of cytokines such as TNF-α, IL-1β, iNOS, and COX-2; and the blocking of p-IκBα production in LPS-stimulated RAW 264.7 cells. Finally, we have analyzed the anti-inflammatory action of OADP in a mouse acute ear edema, in male BL/6J mice treated with OADP and tetradecanoyl phorbol acetate (TPA). Treatment with OADP induced greater suppression of edema and decreased the ear thickness 14% more than diclofenac. The development of new derivatives such as OADP with powerful anti-inflammatory effects could represent an effective therapeutic strategy against inflammation and tumorigenic processes.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1292-1292
Author(s):  
Sanjiv Kumar ◽  
Ciprian Anea ◽  
Itia Lee ◽  
Aluya Oseghale ◽  
Julia Brittain

Abstract Sickle cell disease (SCD) is a pro-inflammatory condition. Levels of TNF-α, IL-6, IL-8, and IL-10 are elevated. There is clear evidence of endothelial cells (EC) dysfunction, and increased leukocyte, and erythrocyte adhesion in patients even in the non-crisis "steady state" condition. Additional insult, either via infection or vaso-occlusive ischemia, induce a dramatic increase in inflammation and EC dysfunction in SCD. Furthermore, there is a kindling of coagulation activation in patients with SCD. We, and others, have reported elevated levels of thrombin and monocyte tissue factor (TF) expression in patients. Both thrombin and monocyte TF expression increase during acute clinical events. In addition to the chronic impairment of lung function, acute chest syndrome (ACS) adds further insult to lung and cardiovascular impairment. In fact, ACS is the leading cause of sudden death in patients with SCD. Although there are multiple etiologies for ACS, infection/sepsis and the dramatic innate immune and coagulation response to it remain a major contributor to morbidity and mortality during ACS. Novel methods to reduce the inflammatory response during infection are needed as are methods that normalize the chronic pro-inflammatory state. Chaperone proteins, namely HSP90 and HSP70, are known agents that participate in inflammation and thus have significant potential to influence the inflammatory, pro-coagulant burden. Therefore, in this study, we wanted to evaluate the novel anti-inflammatory, anti-coagulatory properties of the chaperone proteins in SCD. We had previously determined that inhibition of HSP90 using the drug AUY-922 could block the bacterial toxin lipopolysaccharide (LPS) - induced TF expression and pro-inflammatory cytokine release from monocytes. Therefore, we used the Townes mouse model of SCD to evaluate AUY-922 in a pre-clinical study. Townes mice with SCD or without were administered AUY-922 intraperitoneal (IP) for 4 days prior to a 6 hour LPS-mediated induction of the inflammatory response and coagulation activation. Notably, the dose of LPS failed to induce any pro-inflammatory response in the AA mice (n=24). However, LPS-induced an exaggerated response in the SS mice. Levels of TNF-α, IL-6, IL-8, and IL-10 were elevated up to 40,000 fold over control treated SS mice. Pre-treatment with AUY-922 either completely ablated, or significantly attenuated the inflammatory cytokine response and normalized EC function. Furthermore, the treatment with AUY-922 doubled the amount of the anti-inflammatory chaperone molecule HSP70 in the livers of the SS mice. This particular result suggested that the function of HSP90 could be spared, and the induction of HSP70 was potentially sufficient to protect against the LPS-induced insult. Of note, the main function of HSP70 is cytoprotection in response to oxidative and febrile stress. Therefore, we next sought to determine, in a proof of principle in vitro study, whether induction of HSP70 alone was sufficient to block LPS-induced cytokine release and coagulation activation. We treated human monocytes with the HSP70 inducer, celastrol for 24h, followed by treatment with LPS (1µg/ml). We observed a significant release of the cytokines IL-6 and TNF-α with LPS treatment. However, induction of HSP70 via celastrol was sufficient to block this inflammatory response. Furthermore, we observed that celastrol blocked the LPS-induced, TF-specific clotting of plasma in vitro. Interestingly, we also observed that conditioned media from celastrol treated monocytes could block LPS-induced IL-6 release in an HSP70 dependent manner. Thus, secreted HSP70 was an active participant in cellular protection from LPS-induced insult. Initial studies suggest that secreted HSP70 levels may be lower in patients with SCD than in unaffected individuals. Therefore, replacement of this chaperone may be of significant benefit as therapeutic. Thus, taken together, our data demonstrate in both a pre-clinical and an in vitro proof of principle study, that the chaperone proteins HSP90 and HSP70 are attractive targets at reducing the inflammatory burden and associated acute lung injury in SCD. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document