An overview of databases and bioinformatics tools for plant antimicrobial peptides

Author(s):  
Isadora Louise Alves da Costa Ribeiro Quintans ◽  
João Victor Alcoforado de Araújo ◽  
Lívia Noêmia Morais Rocha ◽  
Annie Elisabeth Beltrão de Andrade ◽  
Thaís Gaudencio do Rêgo ◽  
...  

: Antimicrobial peptides (AMPs) are small, ribosomally synthesized proteins found in nearly all forms of life. In plants, AMPs play a central role in plant defense due to their distinct physicochemical properties. Due to their broad-spectrum antimicrobial activity and rapid killing action, plant AMPs have become important candidates for the development of new drugs to control plant and animal pathogens that are resistant to multiple drugs. Further research is required to explore the potential uses of these natural compounds. Computational strategies have been increasingly used to understand key aspects of antimicrobial peptides. These strategies will help to minimize the time and cost of "wet-lab" experimentation. Researchers have developed various tools and databases to provide updated information on AMPs. However, despite the increased availability of antimicrobial peptide resources in biological databases, finding AMPs from plants can still be a difficult task. The number of plant AMP sequences in current databases is still small and yet often redundant. To facilitate further characterization of plant AMPs, we have summarized information on the location, distribution, and annotations of plant AMPs available in the most relevant databases for AMPs research. We also mapped and categorized the bioinformatics tools available in these databases. We expect that this will allow researchers to advance in the discovery and development of new plant AMPs with potent biological properties. We hope to provide insights to further expand the application of AMPs in the fields of biotechnology, pharmacy, and agriculture.

2018 ◽  
Vol 24 (10) ◽  
pp. 1138-1147
Author(s):  
Bruno Rivas-Santiago ◽  
Flor Torres-Juarez

Tuberculosis is an ancient disease that has become a serious public health issue in recent years, although increasing incidence has been controlled, deaths caused by Mycobacterium tuberculosis have been accentuated due to the emerging of multi-drug resistant strains and the comorbidity with diabetes mellitus and HIV. This situation is threatening the goals of World Health Organization (WHO) to eradicate tuberculosis in 2035. WHO has called for the creation of new drugs as an alternative for the treatment of pulmonary tuberculosis, among the plausible molecules that can be used are the Antimicrobial Peptides (AMPs). These peptides have demonstrated remarkable efficacy to kill mycobacteria in vitro and in vivo in experimental models, nevertheless, these peptides not only have antimicrobial activity but also have a wide variety of functions such as angiogenesis, wound healing, immunomodulation and other well-described roles into the human physiology. Therapeutic strategies for tuberculosis using AMPs must be well thought prior to their clinical use; evaluating comorbidities, family history and risk factors to other diseases, since the wide function of AMPs, they could lead to collateral undesirable effects.


2020 ◽  
Vol 21 (4) ◽  
pp. 429-438 ◽  
Author(s):  
Bruno Casciaro ◽  
Francesca Ghirga ◽  
Deborah Quaglio ◽  
Maria Luisa Mangoni

Cationic antimicrobial peptides (AMPs) are an interesting class of gene-encoded molecules endowed with a broad-spectrum of anti-infective activity and immunomodulatory properties. They represent promising candidates for the development of new antibiotics, mainly due to their membraneperturbing mechanism of action that very rarely induces microbial resistance. However, bringing AMPs into the clinical field is hampered by some intrinsic limitations, encompassing low peptide bioavailability at the target site and high peptide susceptibility to proteolytic degradation. In this regard, nanotechnologies represent an innovative strategy to circumvent these issues. According to the literature, a large variety of nanoparticulate systems have been employed for drug-delivery, bioimaging, biosensors or nanoantibiotics. The possibility of conjugating different types of molecules, including AMPs, to these systems, allows the production of nanoformulations able to enhance the biological profile of the compound while reducing its cytotoxicity and prolonging its residence time. In this minireview, inorganic gold nanoparticles (NPs) and biodegradable polymeric NPs made of poly(lactide-coglycolide) are described with particular emphasis on examples of the conjugation of AMPs to them, to highlight the great potential of such nanoformulations as alternative antimicrobials.


2020 ◽  
Vol 20 (14) ◽  
pp. 1264-1273 ◽  
Author(s):  
Bruno Casciaro ◽  
Floriana Cappiello ◽  
Walter Verrusio ◽  
Mauro Cacciafesta ◽  
Maria Luisa Mangoni

The frequent occurrence of multidrug-resistant strains to conventional antimicrobials has led to a clear decline in antibiotic therapies. Therefore, new molecules with different mechanisms of action are extremely necessary. Due to their unique properties, antimicrobial peptides (AMPs) represent a valid alternative to conventional antibiotics and many of them have been characterized for their activity and cytotoxicity. However, the effects that these peptides cause at concentrations below the minimum growth inhibitory concentration (MIC) have yet to be fully analyzed along with the underlying molecular mechanism. In this mini-review, the ability of AMPs to synergize with different antibiotic classes or different natural compounds is examined. Furthermore, data on microbial resistance induction are reported to highlight the importance of antibiotic resistance in the fight against infections. Finally, the effects that sub-MIC levels of AMPs can have on the bacterial pathogenicity are summarized while showing how signaling pathways can be valid therapeutic targets for the treatment of infectious diseases. All these aspects support the high potential of AMPs as lead compounds for the development of new drugs with antibacterial and immunomodulatory activities.


2021 ◽  
Vol 11 (12) ◽  
pp. 5352
Author(s):  
Ana Margarida Pereira ◽  
Diana Gomes ◽  
André da Costa ◽  
Simoni Campos Dias ◽  
Margarida Casal ◽  
...  

Antibacterial resistance is a major worldwide threat due to the increasing number of infections caused by antibiotic-resistant bacteria with medical devices being a major source of these infections. This suggests the need for new antimicrobial biomaterial designs able to withstand the increasing pressure of antimicrobial resistance. Recombinant protein polymers (rPPs) are an emerging class of nature-inspired biopolymers with unique chemical, physical and biological properties. These polymers can be functionalized with antimicrobial molecules utilizing recombinant DNA technology and then produced in microbial cell factories. In this work, we report the functionalization of rPBPs based on elastin and silk-elastin with different antimicrobial peptides (AMPs). These polymers were produced in Escherichia coli, successfully purified by employing non-chromatographic processes, and used for the production of free-standing films. The antimicrobial activity of the materials was evaluated against Gram-positive and Gram-negative bacteria, and results showed that the polymers demonstrated antimicrobial activity, pointing out the potential of these biopolymers for the development of new advanced antimicrobial materials.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Muthuirulan Pushpanathan ◽  
Paramasamy Gunasekaran ◽  
Jeyaprakash Rajendhran

Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 965
Author(s):  
Renan Campos e Silva ◽  
Jamile S. da Costa ◽  
Raphael O. de Figueiredo ◽  
William N. Setzer ◽  
Joyce Kelly R. da Silva ◽  
...  

Psidium (Myrtaceae) comprises approximately 266 species, distributed in tropical and subtropical regions of the world. Psidium taxa have great ecological, economic, and medicinal relevance due to their essential oils’ chemical diversity and biological potential. This review reports 18 Psidium species growing around the world and the chemical and biological properties of their essential oils. Chemically, 110 oil records are reported with significant variability of volatile constituents, according to their seasonality and collection sites. Monoterpenes and sesquiterpenes with acyclic (C10 and C15), p-menthane, pinane, bisabolane, germacrane, caryophyllane, cadinane, and aromadendrane skeleton-types, were the primary constituents. The essential oils showed various biological activities, including antioxidant, antifungal, antibacterial, phytotoxic, larvicidal, anti-inflammatory, and cytotoxic properties. This review contributes to the Psidium species rational and economic exploration as natural sources to produce new drugs.


2021 ◽  
Vol 10 (8) ◽  
pp. 1763
Author(s):  
Marta Mazzetti ◽  
Giulia Marconi ◽  
Martina Mancinelli ◽  
Antonio Benedetti ◽  
Marco Marzioni ◽  
...  

Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are two chronic cholestatic liver diseases affecting bile ducts that may progress to biliary cirrhosis. In the past few years, the increasing knowledge in the pathogenesis of both diseases led to a growing number of clinical trials and possible new targets for therapy. In this review, we provide an update on the treatments in clinical use and summarize the new drugs in trials for PBC and PSC patients. Farnesoid X Receptor (FXR) agonists and Pan-Peroxisome Proliferator-Activated Receptor (PPAR) agonists are the most promising agents and have shown promising results in both PBC and PSC. Fibroblast Growth Factor 19 (FGF19) analogues also showed good results, especially in PBC, while, although PBC and PSC are autoimmune diseases, immunosuppressive drugs had disappointing effects. Since the gut microbiome could have a potential role in the pathogenesis of PSC, recent research focused on molecules that could change the microbiome, with good results. The near future of the medical management of these diseases may include new treatments or a combination of multiple drugs targeting different signaling pathways at different stages of the diseases.


2021 ◽  
pp. 54-55
Author(s):  
Jayesh Kalbhande ◽  
Vicky Kuldeep

Drug resistance of bacteria is biggest challenge humanity is going to face in near future. Bacteria are rapidly developing resistant to multiple drugs and there are not many new drugs in pipeline. Infection because of drug resistant organism is a common cause of morbidity and mortality in intensive care unit. If acquisition of drug resistance by microorganism progresses at this rate, that time is not very far when we will be pushed in to preantibiotic era. We need to develop new strategies to combat drug resistant by microorganism. We report a case of highly drug resistant urinary tract infection caused by Klebsiella. This strain was resistant to both Inj. Meropenem and Inj. Amikacin. This case was successfully treated by combination of Inj. Meropenem and Inj. Amikacin and complete resolution of infection was observed.


Author(s):  
Mukul Sharma ◽  
Pushpendra Singh

: Leprosy is caused by extremely slow-growing and uncultivated mycobacterial pathogens, namely Mycobacterium leprae and M. lepromatosis. Nearly 95% of the new cases of leprosy recorded globally are found in India, Brazil, and 20 other priority countries [WHO, 2019], of which nearly two-thirds of the cases are reported in India alone. Currently, leprosy is treated with dapsone, rifampicin, and clofazimine, also known as multi-drug therapy [MDT], as per the recommendations of WHO since 1981. Still, the number of new leprosy cases recorded globally has remained constant in the last one-decade ,and resistance to multiple drugs has been documented in various parts of the world, even though relapses are rare in patients treated with MDT. Antimicrobial resistance testing against M. leprae or the evaluation of the anti-leprosy activity of new drugs remains a challenge as leprosy bacilli do not grow in vitro. Besides, developing a new drug against leprosy through the conventional drug development process is not economically attractive or viable for pharma companies. Therefore, a promising alternative is the repurposing of existing drugs/approved medications or their derivatives for assessing their anti-leprosy potential. It is an efficient method to identify novel medicinal and therapeutic properties of approved drug molecules. Any combinatorial chemotherapy that combines these repurposed drugs with the existing first-line [MDT] and second-line drugs could improve the bactericidal and synergistic effects against these notorious bacteria and can help in achieving the much-cherished goal of “leprosy-free world”. This review highlights novel opportunities for drug repurposing to combat resistance to current therapeutic approaches.


Author(s):  
N. Srinivasan ◽  
G. Agarwal ◽  
R. M. Bhaskara ◽  
R. Gadkari ◽  
O. Krishnadev ◽  
...  

In the post-genomic era, biological databases are growing at a tremendous rate. Despite rapid accumulation of biological information, functions and other biological properties of many putative gene products of various organisms remain either unknown or obscure. This paper examines how strategic integration of large biological databases and combinations of various biological information helps address some of the fundamental questions on protein structure, function and interactions. New developments in function recognition by remote homology detection and strategic use of sequence databases aid recognition of functions of newly discovered proteins. Knowledge of 3-D structures and combined use of sequences and 3-D structures of homologous protein domains expands the ability of remote homology detection enormously. The authors also demonstrate how combined consideration of functions of individual domains of multi-domain proteins helps in recognizing gross biological attributes. This paper also discusses a few cases of combining disparate biological datasets or combination of disparate biological information in obtaining new insights about protein-protein interactions across a host and a pathogen. Finally, the authors discuss how combinations of low resolution structural data, obtained using cryoEM studies, of gigantic multi-component assemblies, and atomic level 3-D structures of the components is effective in inferring finer features in the assembly.


Sign in / Sign up

Export Citation Format

Share Document