Strategies Targeting Soluble β-Amyloid Oligomers and their Application to Early Diagnosis of Alzheimer’s Disease

2020 ◽  
Vol 16 (12) ◽  
pp. 1132-1142 ◽  
Author(s):  
Fantian Zeng ◽  
Yuyan Li ◽  
Yungen Xu ◽  
Jian Yang ◽  
Zhengshi Liu ◽  
...  

Background: Alzheimer’s Disease (AD) is the most common neurodegenerative disorder, and it is still incurable. Early diagnosis and intervention are crucial for delaying the onset and progression of the disease. Mounting evidence indicates that the neurotoxic effects might be attributed to Soluble β-Amyloid Oligomers (SAβO). The SAβO are believed to be neurotoxic peptides more predominant than Aβ plaques in the early stage, and their key role in AD is self-evident. Unfortunately, identification of SAβO proves to be difficult due to their heterogeneous and transient nature. In spite of many obstacles, multiple techniques have recently been developed to target SAβO effectively. This review focuses on the recent progress in the approaches towards SAβO detection in order to shed some light on the future development of SAβO assays. Methods : Literatures were obtained from the following libraries: Web of Science, PubMed, EPO, SIPO, USPTO. Articles were critically reviewed based on their titles, abstracts, and contents. Results: A total of 85 papers are referenced in the review. Results are divided into three categories based on the types of detection methods: small molecule fluorescence probes, oligomer-specific antibodies and electrochemical biosensors. Finally, the improvements and challenges of these approaches applied in the early diagnosis of AD were discussed. Conclusion: This review article covers three kinds of strategies that could be translated into clinic practice and lead to earlier diagnosis and therapeutic interventions of AD.

2021 ◽  
Vol 13 ◽  
Author(s):  
Afzal Misrani ◽  
Sidra Tabassum ◽  
Qingwei Huo ◽  
Sumaiya Tabassum ◽  
Jinxiang Jiang ◽  
...  

Alzheimer’s disease (AD) is the most common neurodegenerative disorder worldwide. Mitochondrial dysfunction is thought to be an early event in the onset and progression of AD; however, the precise underlying mechanisms remain unclear. In this study, we investigated mitochondrial proteins involved in organelle dynamics, morphology and energy production in the medial prefrontal cortex (mPFC) and hippocampus (HIPP) of young (1∼2 months), adult (4∼5 months) and aged (9∼10, 12∼18 months) APP/PS1 mice. We observed increased levels of mitochondrial fission protein, Drp1, and decreased levels of ATP synthase subunit, ATP5A, leading to abnormal mitochondrial morphology, increased oxidative stress, glial activation, apoptosis, and altered neuronal morphology as early as 4∼5 months of age in APP/PS1 mice. Electrophysiological recordings revealed abnormal miniature excitatory postsynaptic current in the mPFC together with a minor connectivity change between the mPFC and HIPP, correlating with social deficits. These results suggest that abnormal mitochondrial dynamics, which worsen with disease progression, could be a biomarker of early-stage AD. Therapeutic interventions that improve mitochondrial function thus represent a promising approach for slowing the progression or delaying the onset of AD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kurukulasooriya Kavindya Madushani Fernando ◽  
Yasanandana Supunsiri Wijayasinghe

Alzheimer’s disease (AD) is the most common neurodegenerative disorder, which is associated with memory deficit and global cognitive decline. Age is the greatest risk factor for AD and, in recent years, it is becoming increasingly appreciated that aging-related neuroinflammation plays a key role in the pathogenesis of AD. The presence of β-amyloid plaques and neurofibrillary tangles are the primary pathological hallmarks of AD; defects which can then activate a cascade of molecular inflammatory pathways in glial cells. Microglia, the resident macrophages in the central nervous system (CNS), are the major triggers of inflammation; a response which is typically intended to prevent further damage to the CNS. However, persistent microglial activation (i.e., neuroinflammation) is toxic to both neurons and glia, which then leads to neurodegeneration. Growing evidence supports a central role for sirtuins in the regulation of neuroinflammation. Sirtuins are NAD+-dependent protein deacetylases that modulate a number of cellular processes associated with inflammation. This review examines the latest findings regarding AD-associated neuroinflammation, mainly focusing on the connections among the microglial molecular pathways of inflammation. Furthermore, we highlight the biology of sirtuins, and their role in neuroinflammation. Suppression of microglial activity through modulation of the sirtuin activity has now become a key area of research, where progress in therapeutic interventions may slow the progression of Alzheimer’s disease.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Haoming Li ◽  
Linqing Zou ◽  
Jinhong Shi ◽  
Xiao Han

Abstract Background Alzheimer’s disease (AD) is a fatal neurodegenerative disorder, and the lesions originate in the entorhinal cortex (EC) and hippocampus (HIP) at the early stage of AD progression. Gaining insight into the molecular mechanisms underlying AD is critical for the diagnosis and treatment of this disorder. Recent discoveries have uncovered the essential roles of microRNAs (miRNAs) in aging and have identified the potential of miRNAs serving as biomarkers in AD diagnosis. Methods We sought to apply bioinformatics tools to investigate microarray profiles and characterize differentially expressed genes (DEGs) in both EC and HIP and identify specific candidate genes and pathways that might be implicated in AD for further analysis. Furthermore, we considered that DEGs might be dysregulated by miRNAs. Therefore, we investigated patients with AD and healthy controls by studying the gene profiling of their brain and blood samples to identify AD-related DEGs, differentially expressed miRNAs (DEmiRNAs), along with gene ontology (GO) analysis, KEGG pathway analysis, and construction of an AD-specific miRNA–mRNA interaction network. Results Our analysis identified 10 key hub genes in the EC and HIP of patients with AD, and these hub genes were focused on energy metabolism, suggesting that metabolic dyshomeostasis contributed to the progression of the early AD pathology. Moreover, after the construction of an miRNA–mRNA network, we identified 9 blood-related DEmiRNAs, which regulated 10 target genes in the KEGG pathway. Conclusions Our findings indicated these DEmiRNAs having the potential to act as diagnostic biomarkers at an early stage of AD.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Pavla Valkova ◽  
Miroslav Pohanka

Background. Alzheimer’s disease (AD) is a multifactorial progressive and irreversible neurodegenerative disorder affecting mainly the population over 65 years of age. It is becoming a global health and socioeconomic problem, and the current number of patients reaching 30–50 million people will be three times higher over the next thirty years. Objective. Late diagnosis caused by decades of the asymptomatic phase and invasive and cost-demanding diagnosis are problems that make the whole situation worse. Electrochemical biosensors could be the right tool for less invasive and inexpensive early diagnosis helping to reduce spend sources— both money and time. Method. This review is a survey of the latest advances in the design of electrochemical biosensors for the early diagnosis of Alzheimer’s disease. Biosensors are divided according to target biomarkers. Conclusion. Standard laboratory methodology could be improved by analyzing a combination of currently estimated markers along with neurotransmitters and genetic markers from blood samples, which make the test for AD diagnosis available to the wide public.


2020 ◽  
Vol 21 (16) ◽  
pp. 5858 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Md. Tanvir Kabir ◽  
Md. Sohanur Rahman ◽  
Tapan Behl ◽  
Philippe Jeandet ◽  
...  

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder related to age, characterized by the cerebral deposition of fibrils, which are made from the amyloid-β (Aβ), a peptide of 40–42 amino acids. The conversion of Aβ into neurotoxic oligomeric, fibrillar, and protofibrillar assemblies is supposed to be the main pathological event in AD. After Aβ accumulation, the clinical symptoms fall out predominantly due to the deficient brain clearance of the peptide. For several years, researchers have attempted to decline the Aβ monomer, oligomer, and aggregate levels, as well as plaques, employing agents that facilitate the reduction of Aβ and antagonize Aβ aggregation, or raise Aβ clearance from brain. Unluckily, broad clinical trials with mild to moderate AD participants have shown that these approaches were unsuccessful. Several clinical trials are running involving patients whose disease is at an early stage, but the preliminary outcomes are not clinically impressive. Many studies have been conducted against oligomers of Aβ which are the utmost neurotoxic molecular species. Trials with monoclonal antibodies directed against Aβ oligomers have exhibited exciting findings. Nevertheless, Aβ oligomers maintain equivalent states in both monomeric and aggregation forms; so, previously administered drugs that precisely decrease Aβ monomer or Aβ plaques ought to have displayed valuable clinical benefits. In this article, Aβ-based therapeutic strategies are discussed and several promising new ways to fight against AD are appraised.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Peiqing Chen ◽  
Wenjuan Zhao ◽  
Yanjie Guo ◽  
Juan Xu ◽  
Ming Yin

CX3C chemokine ligand 1 (CX3CL1) is an intriguing chemokine belonging to the CX3C family. CX3CL1 is secreted by neurons and plays an important role in modulating glial activation in the central nervous system after binding to its sole receptor CX3CR1 which mainly is expressed on microglia. Emerging data highlights the beneficial potential of CX3CL1-CX3CR1 in the pathogenesis of Alzheimer’s disease (AD), a common progressive neurodegenerative disease, and in the progression of which neuroinflammation plays a vital role. Even so, the importance of CX3CL1/CX3CR1 in AD is still controversial and needs further clarification. In this review, we make an attempt to present a concise map of CX3CL1-CX3CR1 associated with AD to find biomarkers for early diagnosis or therapeutic interventions.


2008 ◽  
Vol 21 (6) ◽  
pp. 755-771
Author(s):  
O. Schillaci ◽  
L. Travascio ◽  
C. Bruni ◽  
G. Bazzocchi ◽  
A. Testa ◽  
...  

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia in the elderly. Magnetic resonance (MR) or computed tomography (CT) imaging is recommended for routine evaluation of dementias. The development of molecular imaging agents and the new techniques of MR for AD are critically important for early diagnosis, neuropathogenesis studies and assessing treatment efficacy in AD. Neuroimaging using nuclear medicine techniques such as SPECT, PET and MR spectroscopy has the potential to characterize the biomarkers for Alzheimer's disease. The present review summarizes the results of radionuclide imaging and MR imaging in AD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Guimei Zhang ◽  
Zicheng Wang ◽  
Huiling Hu ◽  
Meng Zhao ◽  
Li Sun

Alzheimer’s disease (AD) is one of the most common types of age-related dementia worldwide. In addition to extracellular amyloid plaques and intracellular neurofibrillary tangles, dysregulated microglia also play deleterious roles in the AD pathogenesis. Numerous studies have demonstrated that unbridled microglial activity induces a chronic neuroinflammatory environment, promotes β-amyloid accumulation and tau pathology, and impairs microglia-associated mitophagy. Thus, targeting microglia may pave the way for new therapeutic interventions. This review provides a thorough overview of the pathophysiological role of the microglia in AD and illustrates the potential avenues for microglia-targeted therapies, including microglial modification, immunoreceptors, and anti-inflammatory drugs.


2020 ◽  
Vol 18 ◽  
Author(s):  
Jazmín Alarcón-Espósito ◽  
Michael Mallea ◽  
Julio Rodríguez-Lavado

: Alzheimer’s disease (AD) is a chronic, progressive, and fatal neurodegenerative disorder affecting cognition, behavior, and function, being one of the most common causes of mental deterioration in elderly people. Once thought as being just developed because of β amyloid depositions or neurofibrillary Tau tangles, during the last decades, numerous ADrelated targets have been established, the multifactorial nature of AD became evident. In this context, the one drug-one target paradigm has resulted to be inefficient in facing AD and other disorders with complex etiology, opening the field for the emergence of the multitarget approach. In this review, we highlight the recent advances within this area, emphasizing in hybridization tools of well-known chemical scaffolds endowed with pharmacological properties concerning AD, such as curcumin-, resveratrol-, chromone- and indole-. We focus mainly on well stablished and incipient AD therapeutic targets, AChE, BuChE, MAOs, β-amyloid deposition, 5-HT4 and Serotonin transporter, with the aim to shed light about new insights in the AD multitarget therapy.


2019 ◽  
Vol 26 (30) ◽  
pp. 5625-5648 ◽  
Author(s):  
Jan Korabecny ◽  
Katarina Spilovska ◽  
Eva Mezeiova ◽  
Ondrej Benek ◽  
Radomir Juza ◽  
...  

: Alzheimer’s Disease (AD) is a multifactorial progressive neurodegenerative disorder characterized by memory loss, disorientation, and gradual deterioration of intellectual capacity. Its etiology has not been elucidated yet. To date, only one therapeutic approach has been approved for the treatment of AD. The pharmacotherapy of AD has relied on noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist - memantine, and acetylcholinesterase (AChE) inhibitors (AChEIs) - tacrine, donepezil, rivastigmine and galantamine. Donepezil was able to ameliorate the symptoms related to AD mainly via AChE, but also through reduction of β-amyloid burden. This review presents the overview of donepezilrelated compounds as potential anti-AD drugs developed on the basis of cholinergic hypothesis to act as solely AChE and butyrylcholinesterase (BChE) inhibitors.


Sign in / Sign up

Export Citation Format

Share Document