Functional Nanomaterials for the Detection and Control of Bacterial Infections

2019 ◽  
Vol 19 (27) ◽  
pp. 2449-2475 ◽  
Author(s):  
Huiqiong Jia ◽  
Mohamed S. Draz ◽  
Zhi Ruan

Infections with multidrug-resistant bacteria that are difficult to treat with commonly used antibiotics have spread globally, raising serious public health concerns. Conventional bacterial detection techniques are time-consuming, which may delay treatment for critically ill patients past the optimal time. There is an urgent need for rapid and sensitive diagnosis and effective treatments for multidrug-resistant pathogenic bacterial infections. Advances in nanotechnology have made it possible to design and build nanomaterials with therapeutic and diagnostic capabilities. Functional nanomaterials that can specifically interact with bacteria offer additional options for the diagnosis and treatment of infections due to their unique physical and chemical properties. Here, we summarize the recent advances related to the preparation of nanomaterials and their applications for the detection and treatment of bacterial infection. We pay particular attention to the toxicity of therapeutic nanoparticles based on both in vitro and in vivo assays. In addition, the major challenges that require further research and future perspectives are briefly discussed.

2021 ◽  
Author(s):  
Zhenrong Tang ◽  
Yannan Zhao ◽  
Zaiqi Zhang ◽  
Huan Yue ◽  
Dan Wang ◽  
...  

Abstract Background Due to the overuse of antibiotics, many multidrug-resistant bacteria have emerged, which brings huge challenges to the clinical treatment of bacterial infections. New products for anti-infection are necessary. Methods Madeng’ai powder was added with Milli-Q water or LB culture and autoclaved to prepare medicine suspension at different concentration. Bacteria were cultured in LB with different concentration of Madeng’ai. and swab on LB agar plates to get minimal inhibitory concentration (MIC) of Madeng’ai. Mice back was cut to make wound and MRSA/PAE suspension was injected in the wound area. Then swab with Madeng’ai extracts. Bacteria growth of infected secretions was checked on LB agar, and Hematoxylin and eosin (H&E) staining was performed for Histological analysis of skin tissues infected with bacteria after Madeng’ai and PBS (control) treatment. Results Madeng’ai could widely inhibit E.faecalis, Pseudomonas aeruginosa (PAE), Klebsiella pneumoniae (K.pneumoniae) and Acinetobacter baumannii (A.baumannii) at concentration of 4.0 mg/ml. The mice model also showed that Madeng’ai had imposed restrictions on MRSA and PAE growth in vivo. Conclusion Here, we report that a new Chinese medicine Madeng’ai has antimicrobial activity functions in vitro and in vivo. These data briefly showed that Madeng’ai functioned on antimicrobial and provided a new consideration for an antibiosis product.


2020 ◽  
Vol 15 (3) ◽  
pp. 193-206
Author(s):  
Brognara Lorenzo ◽  
Salmaso Luca ◽  
Mazzotti Antonio ◽  
Di M. Alberto ◽  
Faldini Cesare ◽  
...  

Background: Chronic wounds are commonly associated with polymicrobial biofilm infections. In the last years, the extensive use of antibiotics has generated several antibiotic-resistant variants. To overcome this issue, alternative natural treatments have been proposed, including the use of microorganisms like probiotics. The aim of this manuscript was to review current literature concerning the application of probiotics for the treatment of infected chronic wounds. Methods: Relevant articles were searched in the Medline database using PubMed and Scholar, using the keywords “probiotics” and “wound” and “injuries”, “probiotics” and “wound” and “ulcer”, “biofilm” and “probiotics” and “wound”, “biofilm” and “ulcer” and “probiotics”, “biofilm” and “ulcer” and “probiotics”, “probiotics” and “wound”. Results: The research initially included 253 articles. After removal of duplicate studies, and selection according to specific inclusion and exclusion criteria, 19 research articles were included and reviewed, accounting for 12 in vitro, 8 in vivo studies and 2 human studies (three articles dealing with animal experiments included also in vitro testing). Most of the published studies about the effects of probiotics for the treatment of infected chronic wounds reported a partial inhibition of microbial growth, biofilm formation and quorum sensing. Discussion: The application of probiotics represents an intriguing option in the treatment of infected chronic wounds with multidrug-resistant bacteria; however, current results are difficult to compare due to the heterogeneity in methodology, laboratory techniques, and applied clinical protocols. Lactobacillus plantarum currently represents the most studied strain, showing a positive application in burns compared to guideline treatments, and an additional mean in chronic wound infections. Conclusions: Although preliminary evidence supports the use of specific strains of probiotics in certain clinical settings such as infected chronic wounds, large, long-term clinical trials are still lacking, and further research is needed.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Fang Cao ◽  
Xitao Wang ◽  
Linhui Wang ◽  
Zhen Li ◽  
Jian Che ◽  
...  

Multidrug-resistantKlebsiella pneumoniae(MRKP) has steadily grown beyond antibiotic control. However, a bacteriophage is considered to be a potential antibiotic alternative for treating bacterial infections. In this study, a lytic bacteriophage, phage 1513, was isolated using a clinical MRKP isolate KP 1513 as the host and was characterized. It produced a clear plaque with a halo and was classified as Siphoviridae. It had a short latent period of 30 min, a burst size of 264 and could inhibit KP 1513 growthin vitrowith a dose-dependent pattern. Intranasal administration of a single dose of 2 × 109 PFU/mouse 2 h after KP 1513 inoculation was able to protect mice against lethal pneumonia. In a sublethal pneumonia model, phage-treated mice exhibited a lower level ofK. pneumoniaeburden in the lungs as compared to the untreated control. These mice lost less body weight and exhibited lower levels of inflammatory cytokines in their lungs. Lung lesion conditions were obviously improved by phage therapy. Therefore, phage 1513 has a great effectin vitroandin vivo, which has potential to be used as an alternative to an antibiotic treatment of pneumonia that is caused by the multidrug-resistantK. pneumoniae.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Edward B Neufeld ◽  
Alice Ossoli ◽  
Seth G Thacker ◽  
Boris Vaisman ◽  
Milton Pryor ◽  
...  

Familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is characterized by low HDL, accumulation of an abnormal cholesterol-rich multilamellar particle called lipoprotein-X (LpX) in plasma, and renal disease. The aim of our study was to determine if LpX is nephrotoxic and to gain insight into the pathogenesis of FLD renal disease. We administered a synthetic LpX, nearly identical to endogenous LpX in its physical, and chemical properties, to wild-type and Lcat -/- mice. Our in vitro and in vivo studies demonstrated an apoA-I and LCAT-dependent pathway for LpX conversion to HDL-like particles, which likely mediates normal plasma clearance of LpX. Plasma clearance of exogenous LpX was markedly delayed in Lcat -/- mice, which have low HDL but only minimal amounts of endogenous LpX and do not spontaneously develop renal disease. Chronically administered exogenous LpX deposited in all renal glomerular cellular and matrical compartments of Lcat -/- mice, and induced proteinuria and nephrotoxic gene changes, as well as all of the hallmarks of FLD renal disease as assessed by histological, TEM, and SEM analyses. Extensive in vivo EM studies revealed LpX uptake by macropinocytosis into mouse glomerular endothelial cells, podocytes, and mesangial cells and delivery to lysosomes, where it was degraded. Endocytosed LpX appeared to be degraded by both human podocyte and mesangial cell lysosomal PLA 2 and induced podocyte secretion of pro-inflammatory IL-6 in vitro and renal Cxl10 expression in Lcat -/- mice. In conclusion, LpX is a nephrotoxic particle that in the absence of LCAT induces all of the histological and functional hallmarks of FLD and hence may serve as a biomarker for monitoring recombinant LCAT therapy. In addition, our studies suggest that LpX-induced loss of endothelial barrier function and release of cytokines by renal glomerular cells likely plays a role in the initiation and progression of FLD nephrosis.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Guangchao Qing ◽  
Xianxian Zhao ◽  
Ningqiang Gong ◽  
Jing Chen ◽  
Xianlei Li ◽  
...  

Abstract New strategies with high antimicrobial efficacy against multidrug-resistant bacteria are urgently desired. Herein, we describe a smart triple-functional nanostructure, namely TRIDENT (Thermo-Responsive-Inspired Drug-Delivery Nano-Transporter), for reliable bacterial eradication. The robust antibacterial effectiveness is attributed to the integrated fluorescence monitoring and synergistic chemo-photothermal killing. We notice that temperature rises generated by near-infrared irradiation did not only melt the nanotransporter via a phase change mechanism, but also irreversibly damaged bacterial membranes to facilitate imipenem permeation, thus interfering with cell wall biosynthesis and eventually leading to rapid bacterial death. Both in vitro and in vivo evidence demonstrate that even low doses of imipenem-encapsulated TRIDENT could eradicate clinical methicillin-resistant Staphylococcus aureus, whereas imipenem alone had limited effect. Due to rapid recovery of infected sites and good biosafety we envision a universal antimicrobial platform to fight against multidrug-resistant or extremely drug-resistant bacteria.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Denis Zofou ◽  
Golda Lum Shu ◽  
Josepha Foba-Tendo ◽  
Merveille Octavie Tabouguia ◽  
Jules-Clement N. Assob

Background. The threat to human health posed by multidrug-resistant strains of Salmonella typhi (S. typhi) and Salmonella paratyphi (S. paratyphi) is of growing concern. Generally, there has been increasing resistance and even multidrug resistance to almost all classes of antibiotics. This has rendered treatment with antibiotics difficult and costly. The present study investigated the bioactivity of pectin and pectin hydrolysates derived from a local fruit, Spondias dulcis, against four strains of Salmonellae. Methods. Pectin was extracted from alcohol extractives-free peel by acidic hydrolysis at a temperature of 80°C for one hour at pH 2 and 4. The pectin was precipitated with 95% alcohol at an extract to alcohol ratio of 1:10 v/v. Antimicrobial activity was determined using agar well diffusion technique. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined using the broth dilution technique. An in vivo study was then carried out with the bioactive extracts against the most resistant bacteria strain, to fully establish the therapeutic effect of these extracts. Balb/C mice were used, and ciprofloxacin was the positive control antibiotic. The extracts were administered to mice at two doses, 5mg/Kg and 10mg/Kg. The efficacy of extracts in the treatment of typhoid was evaluated based on survival rate, change in body weight, and change in bacteria load. Results. Only one of the extracts (crude pectin pH 2.5) was active against all the Salmonellae by well diffusion, and the growth inhibition varied from 12mm to 15mm at100 μg/ml. Three of the extracts (crude pectin pH 2.5, pH 4, 12h hydrolysate, and pH 4, 1h hydrolysate) had MIC and MBC against all four Salmonellae strains with MIC ranging from 5.68 to 44.45 μg/ml and MBC from 11.36 to 44.45 μg/mL. Three treatments, namely, the pH4-12 hr, hydrolysate at 10mg/Kg and 5mg/Kg, and the pH4-1hr, hydrolysate at 10mg/Kg, had therapeutic effects against Salmonella infection in mice. Conclusion. The present study highlights the potential of pectin oligosaccharides as new source of anti-Salmonella drugs. Further investigations including exploration of mechanism of action of the most active pectin extracts/hydrolysates are envisaged.


10.12737/2753 ◽  
2013 ◽  
Vol 20 (4) ◽  
pp. 160-165
Author(s):  
Сергиевич ◽  
A. Sergievich ◽  
Чайка ◽  
Vladimir Chayka ◽  
Голохваст ◽  
...  

There are both in the domestic and the world science a discussion about the biological activity of water-insoluble solid microparticles technogenous and natural. These interactions are studied in the context of the professional pathology, hygiene and nanotoxicology. The purpose of this research was to study the mechanisms of action of particles of natural minerals of various sizes on biological systems. The paper is based on the applied modern methods which allow to determine the degree of interaction of microelements with the functional systems of the organism. Analysis of the results showed that the application of these methods has a number of shortcomings in the experiments in vivo and in vitro, associated with the physical and chemical features of zeolites. It is established that under cultivation in 6- and 24-hole tablets, the zeolite in a dose of 50 mg/ml covers all the cells attached to the glass. In the fields of view of the cells are practically invisible. Thus, an assessment of toxic effects or functional condition of the cells is not possible. Zeolite being water-insoluble compound wich is not subjected to the pipetting. At the delete zeolite of culture, there is practically full elimination of cells from the hole. Accumulation of the primary information about the biological effects of nano - and microparticles is extremely important. This allows the authors to make some conclusions, but the decision of a question on the mechanism of biological activity, especially the prediction of some properties of particles without the study of physical-chemical properties of the particles isn´t possible.


2014 ◽  
Vol 59 (3) ◽  
pp. 1620-1626 ◽  
Author(s):  
Osmar N. Silva ◽  
Isabel C. M. Fensterseifer ◽  
Elaine A. Rodrigues ◽  
Hortência H. S. Holanda ◽  
Natasha R. F. Novaes ◽  
...  

ABSTRACTThe rapid increase in the incidence of multidrug-resistant infections today has led to enormous interest in antimicrobial peptides (AMPs) as suitable compounds for developing unusual antibiotics. In this study, clavanin A, an antimicrobial peptide previously isolated from the marine tunicateStyela clava, was selected as a purposeful molecule that could be used in controlling infection and further synthesized. Clavanin A wasin vitroevaluated againstStaphylococcus aureusandEscherichia colias well as toward L929 mouse fibroblasts and skin primary cells (SPCs). Moreover, this peptide was challenged here in anin vivowound and sepsis model, and the immune response was also analyzed. Despite displaying clearin vitroantimicrobial activity toward Gram-positive and -negative bacteria, clavanin A showed no cytotoxic activities against mammalian cells, and in acute toxicity tests, no adverse reaction was observed at any of the concentrations. Moreover, clavanin A significantly reduced theS. aureusCFU in an experimental wound model. This peptide also reduced the mortality of mice infected withE. coliandS. aureusby 80% compared with that of control animals (treated with phosphate-buffered saline [PBS]): these data suggest that clavanin A prevents the start of sepsis and thereby reduces mortality. These data suggest that clavanin A is an AMP that could improve the development of novel peptide-based strategies for the treatment of wound and sepsis infections.


Sign in / Sign up

Export Citation Format

Share Document